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Reproducing a Type of Aspero-Mota Iteration

Tadatoshi Miyamoto

Abstract

We reproduce a type of Aspero-Mota iteration of finitely proper posets in two
stages. In the first stage, we force a type of stationary set £ to the set of countable
subsets of £ (ie. the length of the iteration) by proper forcing. In the second stage,
we iteratively force with €&-finitely proper posets that satisfy a size restriction.
Subsequently, the iteration thus constructed is considered &-proper. In this way, &
guides the second stage of our construction.

Since relevant posets possess appropriate chain conditions, we deal with them as
predicates in a first-order structure % whose universe is a common transitive set
H, ie., the set of sets that are hereditarily of sizes less than k. Since elementary
substructures of A do not contain our posets as points but as predicates in the
substructures, careful treatments of forcing that regards posets as predicates are
required.

In this note, we prepare basics in this line of our treatment of forcing.
Subsequently, we prepare the stationary set € in the first stage of our construction.
The remainder of our construction will be continued in a sequel to this note.

Introduction

Aspero and Mota introduced a new type of iterated forcing in [AM]. They
formulated a class of posets called finitely proper. This class includes the ccc
posets. They iteratively force with posets that are finitely proper whose
underlining sets are of sizes at most the least uncountable cardinal w,. While
performing this process, they used side conditions. A side condition to a condition
p is a finite relation R from the elementary substructures N of a prefixed first-
order structure 4, whose universe is the transitive set H,, to the stages & of the
iteration. A combination of a type of crucial elementary substructure N and a
stage £EN, which is known as a marker of N, in R indicates that p is (P, N)-
generic

Aspero and Mota treat crucial Ns as projections of N's that are derived from
simple-looking clubs with respect to various considerably large transitive sets.
Since relevant posets possess the w,;-cc, we treat our posets as predicates to
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expand A. Hence, we are free from formulating rather abstract projections.
Furthermore, there is a possibility of having more control over the relevant
countable elementary substructures. However, we must cautiously treat iterated
forcing to regard posets as predicates.

§ 1. Basics

Throughout this paper, we have a fixed regular cardinal £k>w,. Let P be a
poset such that PEH, and P has the k-cc.

1.1 Lemma. (1) For any P-name 7, there exists a P-name 7<= H, such that

lp“if t€HY'¢, then 7=1".

(2) If t€H, is a P-name, then picE HY 7,

(3) 1p*H/ " = {z:]c=H) is a P-name}”.
Proof. (1) : By induction on ;& dom(z). Let us enumerate members of 7 such
that

={-, (%, p), = }.

Let us take a P-name 7z;& H, corresponding to 7; for each 1.
Since P has the k-cc, we have a set of ordinals I such that |7| <k and

lpif t€H'9, then t={(m)¢li€L, pEG)”.
Let z={(m, py)|i€I1}. Then n=H, is a P-name such that
lpr={(m)e i€, pEG)”.

Hence 1p%if t€H'%, then 7=1".
(2) :Let us enumerate t=H,N V? such that t={(z, p)iEI} with
|1l <k. By induction we have llFp“;EH 1.
Then l-p*t= {(z)¢l i€ 1, p;= Gy CHC”.
Since k remains regular, we have 1|-p“c= H/¢”
(3):By (1) and (2).

1.2 Lemma. For any formula ¢(xy, -, x,), there exists a formula ¢ (y, x1, =, T,)
such that for any sequence of P-names 7, ***, 7, and any p&P, we have

Pl (H €, HY, G, P, <, 1, RDE“p(zy, -, 7,)""
iff
('H/C’ E’ P’ g) 1’ Rg) ': “(D*(pa Tl’ ...) Z-n) ”'
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Here, RE={(q, 7, ©)|qEP, t, r€H,N V' such that qlp“rt=z"} is a ternary
relation on H, that is not definable in the structure (H, &, P, <, 1) in general.

Proof. By induction on ¢. We discuss typical cases and employ abbreviations in
the rest.

atomic : pl-pHY ' =& iffvd<p3r<d3 (m, p)Er such that »<p; and rl»
“r=x". plp“HY "=z is in HY"” iff Yd<pIr<dJe, zEH, such that z=¢ and
rp“t=2", where z=¢ iff 3f:TC(e)—H, such that VzETC(e)f(x)={(f(y),
DlyEzx} and z={(f(x), D |z<e}.

Pl HY ¢ E“s is in G”” iff Yd<pIr<d3Igr<g such that rl-pt=¢".

Pl “HY ¢ =4z is in P’ iff Vd<pIr<d3Ig=P such that rl,t=¢".

Plp HY' = “c<z” iff Vd<pIr<dIg, ¢EP such that ¢;<g, and 7l-,“t=g,
and 7=¢g,".

Pl “HY = “RE(z, 1y, m)”” iff Yd<pIr<d3g, ¢, ¢-=P such that RE(g, g, g»)
and 7lp“t=¢g, mi=¢;, and m=4g,".

We discuss typical atomic cases where the constant 1 gets involved. Let ¢ be
any atomic formula such that plFr“HY = “o(z, )" iff H.=“p"(p, 7, 7)” Then
pPlp“HY' = o, ©) " iff H=“¢ (p, 1, )" iff ItEH, such that t=1 and H=
“o (p. 7. 1)

logic : We discuss typical two cases.

Pl HY =401 (@) Ay (@™ it plp HY' =01 (D) 7 and pl=p HY' (D) iff
H.="ei(p, ©” and H.=“¢i(p, D" iff H.="ei(p, O Ne:(p, D”.

Pl p HV G = “m0(0)77 i v d < p(dl-p“HV ¢ = “0 ()" gets negated) iff v d<p(H.=
“o"(d, 7)”gets negated) iff vd<p H.F“"¢'(d, 7).

exz'_sts:p”—P“HCV[G']#“ Jye(y, 077 iff IY=H,N V" such that pl-»“H''% = “p(y, 077
iff 3geH, NV H=“p"(p, 1, )", where

yeH NV iff 3f:TC(y)—2 such that Yz=TC(y), f(x)=1 iff z is a binary
relation such that f[dom(x)]={1} and range(x)SP, and ¢y is a binary relation
such that f[dom(g)]= {1} and range(y)SP.

0
1.3 Lemma. Let N be an elementary substructure of the structure (H, €, P, <, 1, RY) ,
this be denoted by
N<(H, €, P, <, 1, RE).
Let us denote
1p“NLG] = {zclte NNV,
Then we have
U= *NIGI<(H'Y, €, HY, G, P, <, 1, RY”.
Proof. Let t&NN V®. Suppose that
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pl=rHY =S ye(y, O™
It suffices to get yENN V? such that
bl H =0 (g, D77
However
B =3y vzlelz, D=9y, 7).
Hence

SYEHNVIVZEHN VI = o, D=0, 7).

Let @ be a formula such that for any P-names g, 2, 7 in H,, and any ¢&P, we

have
gl HY'C =02, D=9 (g, )"
iff
HE“D'(q, y, 2, m)".
Then

JYEHNVIVZEHNVE HE“D(1, 3, 2, D).
Rewrite this as

H.=“3y P-name Yz P-name ©°(1, 9, 2, ©)”.
Since N<H,, there exists y=NMN V? such that

H.=“YVz Pname ©'(1, 9, 2, 0)".

Hence

VEEH NV HY Y E oG, D=0y, 0.
Rewrite this as

- HY' = v 2(p(z, D=0(g, D).

Hence

p”_P“H,;cV[G] = u(p(y-’ T) 9 77'

O

1.4 Lemma. Let N<(H,, €, P, <1, RY) be countable. The following are equivalent.

(1) For all predense subsets AEN of P, ANN are predense below p.
(2) pll—p“N[G_] NHY=N".
3) pIFp“NLGINe=NNg".
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Proof. (1) = (2):Let t=NN V% Let A be a maximal antichain such that
AC{aEP|al-pvEH || S eEH alp“c=2¢"}.

Since P has the k-cc, we may assume that A&N. Hence AN is predense
below p. Let G be P-generic over the ground model V with p&G. Then in VIG],
we have aEANNNG. Since we assume that t;EN[G]NH/Y, it must be the case
that there exists e=H) such that al-p“ct=¢". Since a, tEN<H, we may take
e=N. Hence ts;=e=N. This establishes that N[G] NH'ESN. Conversely, let x&N.
Then 2ENNV? and so zN[G]NH/.

(2)= (38) :Since kC H/, this is trivial.

(3= (1):Let AEN be a predense subset of P. Let us enumerate f: |A|—A.
We may assume fEN<H,. Let G be P-generic over V with p&G. Then in V[G],
there exists i€|A| such that f(G)EG. Since N[G]<H''®' we may assume that
1EN[G]Nk=NNkr. Hence f((H)EANNNG+#0. This establishes that ANN is

predense below p.
O

If a poset P is in H,, we have a usual treatment by considering PEN<(H,, ©).
But two appraoches are equivalent.

1.5 Lemma. Let (P, <, 1)&H, be a poset. Then the following are equivalent.
(D) (P, <, HVEN<(H, E).
(2) N<(H, €, P, <, 1, RD).
Proof. We comment on a harder direction (1) = (2):
Claim. For any formula ¢(vy, -+, v,), there exists a formula ¢~ (u, v, w, vy, ***, v,)
such that for any sequence zx,, *-*, x,©H, we have

(H, €, P, <, 1, RDE“p(zy, *+, 2,)”
iff
(H'm E)':“¢7<Py g» 1’ Xy, ", xn)”'

To see this, we observe that the ternary relation RZ is definable in (H,, &)
with the parameter (P, <, 1) by considering its characteristic function fEH,. We
follow [K].

plpr=1" iff 3 f:PX(TC(z) N V) X (TC(z) N VF)—2such that (1), (2), and (3);

(D f(p', m, m)=1 iff (a) and (b);
(a) V (zf, sDEMmVYdA<p Ig<dsuch that (¢£s{l| 3 (7, s3) Emq<sif(q, n], m)=1).
(b) vV (m, sh)emvd<p'Iq<dsuch that (g£si| 3 (&, s)Emq<sif(q, n], m3)=1).
(2) V(m, spEnGVd<p3g<d such that (g<Ls||T (m, s2)Ewg<s,f(q, m, m)=1).
3) V(m, sERVd<p3Ig<d such that (¢£Ls,)|T (m, spDETg<sf(q, m, m)=1).
0
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We consider basics related to two step iterations P*Q. We deal with a relevant
case where @ satisfies a size restriction. In particular, it is a point in H?.

1.6 Lemma. Let Q= (!, <, 1) be a poset”. We form a two step iteration P*Q
such that

{((p, DIpEP U{(D, DIpp9EQ") CP+QCH,

Let X<(H, €, P*Q, <p.g (1p 1), RE?). Then we have
(D) X<(H, €, P, <p, 1p, RD).
(D) LFpQEXIGI<HY, &, HY, G, P, <p, 1p)".
Proof. (1) : We first
Claim. For may formula ¢(v,, -:-, v,), there exists a formula ¢ (v, -+, v,)
such that for any sequence z,, -+, ,&H,, we have

(H, €, P, <p, 1p, ROE“p(ay, -+, x,)".
iff
(H,, €, PxQ, <p.g, (1p, 1), REDE=“p"(xy, =, 20"

To see this, we consider a translation of P-names 7 to P*@-names 7z". such that
p.o“terp=17"". The translation.is definable in (f,, €, P*Q, <p.s (1p 1)). Namely,
y=7 iff 3t: TC(o)NVP—VYNH, such that

t@)={@@), (s, I, sHED).
y={t@, (s, D@ 9HED.

(2):By (1), we have 1pl-p“X[G] < (HY'C, €, HY, G, P, <p, 1p)". Tosee <€X[G],
we must have its P-name in X. But we may pick a sequence {A;li, iSw)EX
such that A; is a maximal antichain in {aEP|(a, ©)<p.¢(a, /)}. Then we see that
{(a, (4, D) |aE Ay i, j<w}EXNVT is a P-name of <.

o

§ 2. Mother €

We discuss the first stage of [AM] where what they call a symmetric system
gets forced. We focus on the family of countable subsets of £ induced from the
system.

2.1 Definition. We say a stationary subset € of [k]” is a mother, if
(D) If XEEand YEE[X, then YNw, < XNw;<w;, where [X={YEEY#X, YCX]}.
(2) If X;, X,= € with X;Nw;=X,Nw;, then there exists an isomorphism ¢ : (X;, <)
—(X;, <) such that ¢[(X;NXy) is the identity and &[Xo=¢[E[X]=
Y] YEEX).
(3) If X;, &€ with X;Nw, < ¥;Nwy, then there exists V&€& such that ¥{Nw,= Y% Nw,
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and X,E£]Y.
W If X, YEE with YNw,<XNw, and ea=X with cf(a) >w,, then there exists
oEXMNa such that XN YNaCp.

2.2 Lemma. (CH) There exists a poset P such that
(1) PCH, is proper and has the wsy-cc.
(2) In the generic extensions V¥ | there exists a mother.

The relevant poset is the very first stage of [AM].

2.3 Definition. pE Py =P, if
- (ob)p is a finite set such that for all Nep, N<(H, &) is countable.
« (iso) If N, N;Ep with MNw,=N,Nw;, then there exists an isomorphism

¢: (N, €, pNN)—V, €, pNNy)

such that ¢[(M NN, is the identity.

« (up) If N, MEp with MNw,<NNw,, then there exists ZEp such that MEZ
and ZMNw,=NNw,.

For p, gEP, define ¢<p, if ¢=2p.

The important facts in taking copies of countable sets are the following.

2.4 Lemma. Let N, N,<(H,, &), say both countable, ¢: (V;, €)— (N, ) be an
isomorphism, and a countable set X&N, so that ¢(X)=¢[X]. Then

(1) (uniqueness) If ¢y, : (V, e)—(N, &), ey, (Vs e)—(N, &) are the unique
transitive collapses, then ¢y, © p=cy, and so ¢=cy' © ¢y, is unique.

(2) (copying elementarity) If X<(H, &), then ¢(X)<(H,, &).

(3) (copying iso) If f: (X, €)—(Y, &), say both X and Y are countable, is an
isomorphism such that f, X, YEN, then ¢(f) : (¢(X), €)—(¢(Y), €) is an
isomorphism.

Proof. (1) :The axiom of extensionality gets satisfied by both N, and N.
Hence we have the uniqueness of transitive collapses.
(2) :Let x=X. Suppose H.=“Fye(y, ¢(x))”. We want 1, =X such that

HE“p(@(xy), ¢(2))".

Since N;<H,, we have N;E=“Fyp(y, ¢(x))”. Since ¢: Ni—N, is the isomorphism,
we have NE“TJye(y, x)”. Since M;<H,, we have H.=“Jye(y, x)”. Since X <H,, we
have x,&X such that HFE “¢(x, x)”. Hence NFE “¢(x, x)”. Hence N,=
“o(p(xo), ¢(x))”. Hence H.E=“p(p(xy), ¢p(x))”.
3): f: (X,e)—(Y, &) is an isomorphism iff H.= “f: (X, €)—(Y, &)
is an isomorphism”.
O
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2.5 Lemma. (CH) Py;,=P has the ws-cc.

Proof. Let {(p;|i<w,) be an indexed family of conditions of Pi,. Take N,<H,
with p,&N; for each i<w, By CH, we may assume that N;s form a A-system with
the kernel A. We may also assume that (I, &, p))s are isomorphic. Let
c]\;i:]\fi—ﬂvi be the transitive collapse of N.. By CH again, we may assume that
ex[A=cy[A for all i<j<w, Then N;N (p;Up;) =p: and N,N (p;Up) =p; . Hence p;Up;U
{N, N} EP and it is a common extension of p; and p; in P.

0

2.6 Lemma. (proper) Let pEPyy,=P and N<(H,, &, P, <, 1, RY) be countable with
NEp. Then p is (P, N)-generic. By this we mean that for every predense subset
AEN of P, ANN is predense below p.

Proof. Let p, N and A be as in the statement. Let ¢g<p. We may assume that
there exists a&EA with ¢<a. Since ¢ N is finite, we may use ¢g(1/N as a parameter
in N. We have

(H, €, P, <, 1, RB=“3q in P and 3ad€A(@NN)Cq, ¢<adEA".
Since (¢NN), AEN<H, we may fix ¢/, @ =N. Let
r=qU U {¢w ¢ INMNEq, NNw=NNw}.

/

Then &P and r is a common extension of ¢, ¢’, and so & in P. This

establishes that A NN is predense below p.
0

We consider a situation when isomorphisms get extended, though we see no
use of this in this note.

2.7 Lemma. Let pEP,y,=P. Let N, Ny<(H,, €, P, <, 1, R®) such that N, NEp and
NNw; =N, Nw,. Let us assume that

¢: (N, €, P, <, 1, REO—(N, €, P, <, 1, RD).
is the isomorphism. Then ¢ gets extended to

plpé: (NLG], €, N, GNN, PNN, <NN, RENN)—>
(NG, €, N, GNN,, PON,, <NN,, RENN)”.

Proof. We know that p is (P, N)-generic and (P, N,)-generic. Let G be
P-generic over the ground model V with p&G. We argue in V[G]. Let us define
(abusive notation) ¢: N[G]—N,[G] by

¢ (76) =9 (Do

We have to show several items.
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(well-defined): Let 7, z&NN VT, Suppose t;=m;. We want to show ¢(7)s=
¢ (7)e. We first note that NE=“tr is a P-name”. Hence N, = “¢(7) is a P-name”. Hence
¢ (7); gets defined. Next note that if wEGNN and wlp“t=7", then ¢(w) =G and
¢ pp(t)=¢(x)” and so ¢(1)s=¢ () holds. To see this, we argue as follows.
Take g&G such that g<w, p. Then N, Nj&qg. Since wCN(lg, we have
¢(w)CN,NgCq. Since ¢p(w)<EP, we conclude ¢<¢(w). Hence ¢(w)E=G.

(one-to-one, onto, and &-homo): Similar to well-definedness.

(extends, N to N, homo) :Let EN. Then FENNV? and ¢(#)=¢(x) holds.
Hence ¢(x) =¢ (&) Since ¢[N]=N, ¢ is N to N, homo.

(GNN to GNN, homo) :Let gGNN. Take g=G such that ¢<g, p. Then
N, Ni&q. Since gCNMNgq, we have ¢(g) CN,Ngq. Since ¢(g) =P, we have g<¢(g).
Hence we conclude ¢(g) EN,NG. Conversely, let gEN,NG. Then by considering
¢ !, we have ¢ '(g)ENNG. Hence g=¢ (¢ '(g))E¢d[NNGJ.Hence ¢[GNN]=GNN,
holds.

o

2.8 Lemma. In the generic extensions V7%, let
g={NNx|NE S

Then g is a mother. .

Proof. Let G be P-generic over V. Let £=&g.

(stationary) :In V[G], let Fs=F: [k]"“—k. We want to find NNkEENC(F),
where

C(hH={Xelkl|Vac[X]°Fla)EX}.

To this end take pEG such that pl-p“F: [k]"“—x”. Take a countable
elementary substructure N° of H,, where 6 is a sufficiently large regular cardinal, with
H,P <,1, RE p, FEN".Let N=N"NH, and gq=pU{N}.Then N<(H, &, P, <,1,RD),
qEP, N=q ,andso q is (P, N) -generic. We may assume that ¢=G . Since N[G]=
N'[GINHY and N'[G]NkEC(F), we have NNk=N[G] Ne=N'[G]NkEENC(F).

(D :Let NNk, MNgEE such that NNg#MNk and NNkCMNk. Take peG
such that N, M&p. We want NNw,<MNw,. Suppose NNw,=MMNw,. Then we
would have NNg=MMNg. Suppose MMNw,<NMNw,;. Then we would have Ny&p such
that MEN, and NyNNw,=NMNw;. Then NNcCMNckCNy(Nk, and so NMNeg=N,Nk.
Hence we would have NNk=MMNk. Therefore NNw, <M MNw,<w,.

(2) :Let NNk, NyNee € with NNw; =N, Nw;. We want an isomorphism ¢: (N Nk,
<)— NNk, <). Let peG with N,Njep. Since NNw;=N,Nw;, there exists an
isomorphism ¢ : (N, €, p(AN)—(N, €, p(N). We check that ¢LE[(NNk)]=
E[(MNk).Let MNkEE [(NNk). Then we may assume that MEp N N. Hence ¢[MNkl=
d(M) NrEE[(N;Nk). Conversely, let MiNkEE[(NiNk). Then we may assume that
M EpN N, .Hence ¢ '(Mp)=MEpNN.Hence MiNe=¢M) Ne=¢[MNr]EFLE(NN
).
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(3): Let MNg, NNNgkEE with MNw,<NyNw;. Let p=G such that M, N,Ep.
Take N&p such that M&N and NNw, =N, Nw;. Then NMNg&E such that MNke
E[(NNk).

(4) :Let MNk, N\NkEE with MNw; <N, Nw; Let a=N, Nk with cf(a) >w,. Let
pEG such that M, Nep. Take Nep such that MEN and NNw,=N,Nw,. Then
MNN=NN¢(M) holds, where ¢: N—N,. Then MNN, NaC@(M)Na=N,. Hence
there exists p&N,MNa such that MM N NaCp.

0
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