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A Simplified Morass using Partially Frozen Finite Conditions

Tadatoshi Miyamoto

Abstract

　 Jensen invented the morass around 1970, which he used to solve open problems in model 
theory. Jensen’s morass appears to be strongly related to the fine structure of the constructible 
universe of Godel; however, Velleman provided new points of view to simplify Jensen’s morass 
around 1980. He showed the existence of his simplified morass was equivalent to Jensen’s. 
Velleman also solved problems in set theory and topology using his simplified approach.
　 We focus on one of Velleman’s simplified morasses in the forcing construction, within which 
several partially ordered sets (posets) are known; some consist of countable conditions and 
others are finite. The finite conditions are usually formed together with finite fragments of fast 
functions. The fragments control the continuous growth of the forced simplified morass. This 
study presents a new poset of finite conditions that bear no finite fragments of fast functions. They 
are partially ordered so that the forced object reveals its unstable shape by gradually freezing its 
body. This new poset is proper and has the correct chain condition under the continuum 
hypothesis.

Introduction

　 Our studies ([M1], [M2]) propose partially ordered sets (posets) that comprise finite conditions 
to force a simplified (ω1, 1)-morass. As [M1] and [M2] incorporate fast functions, it is possible to 
acquire continuity on the part of the family  forced. Namely, the formulation of the item called 
(partition) in [M1] and [M2] that involved the notion of lim( )＝{N∈  | ( ∩N)＝N}.  
We also propose a poset that consists of two types of elementary substructures to force a 
simplified (ω2, 1)-morass in [M3]; however, in this forcing, it appears impossible to acquire 
continuity regardless of relevant cofinalities. This observation led to the formulation of the item 
(2-partition) in [M3]. This study presents a new poset to force a simplified (ω1, 1)-morass similar 
to [M3], which involves the countable elementary substructures with no fast functions. The 
morass and related matters can be found in [J] and [D]. The simplified morass and related 
matters can be found in [V] and [D].

　 Notation. Let us denote Hω2:＝{x | the transitive closure of x with respect to the binary 
relation ∈ is of a size less than ω2}. Let (Hω2 , ∈, · · ·) be your favorite relational structure. 
Somewhat abusively, denote 0:＝{N∈[Hω2]

ω | the naturally induced substructure (N, ∈, · · ·) 
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of (Hω2, ∈, · · ·) by N is an elementary one}. For N∈ 0, we know ω1∩N＜ω1 and denote αN:＝ 
ω1∩N. For N, N´∈ 0, write N＝ω1 N´ if αN＝αN´ and N＜ω1 N´, if αN＜αN´. For any map ϕ: N  
N´ and A⊆N, denote ϕ[A]:＝{ϕ(x) | x∈A}.

　 We intend to exhibit a proper poset P that has the ω2-cc under the continuum hypothesis 
(CH) and forces  over the ground model V s.t.

　 •(el) ⊆( 0)
V.

　 • (iso) If N, N´∈  with N＝ω1 N´, then there exists the unique isomorphism ϕNN´: (N, ∈, · · ·) 
 (N´, ∈, · · ·) s.t. ϕNN´(x)＝x for all x ∈N∩N´.

　 •(up) If N3, N2∈  with N3 <ω1 N2, then there exists N1∈  s.t. N3∈N1＝ω1 N2.
　 •(down) If N1, N2, N3∈  with N3∈N1＝ω1 N2, then ϕN1N2(N3)∈ .
　 • (2-partition) ＝ suc( )∪ dir( ), where for N∈ ,
　　N∈ suc( ), if there exists (N1, N2) s.t.
　　＊ ∩N＝{N1, N2}∪( ∩N1)∪( ∩N2).
　　＊If N1≠N2, then N1＝ω1 N2 and ∆:＝(ω2∩N1)∩(ω2∩N2)＜(ω2∩N1)\ ∆＜(ω2∩N2)\ ∆≠ .
　　 N∈ dir( ), if ( ∩N, ∈) is directed, i.e., for any X, Y∈ ∩N , there exists Z∈ ∩N s.t. 

X, Y∈Z.
　 •(cof) ＝(Hω2)

V.

　 Note. If ∩N＝ , then N∈ dir( ) by the definition. Even if N∈ dir( ), it is not intended 
to have N＝ ( ∩N). This is the new point of view in the study resulting in the new poset P. 
In [M3], we proposed a similar representation of a simplified (ω2, 1)-morass.

The Projection of 

　 Let  be as in the previous section. Hence,  satisfies (el), (iso), (up), (down), (2-partition), 
and (cof) in the generic extension where the cofinalities and so the cardinalities are all 
preserved. We consider the projection

＝ 「ω2:＝{ω2∩N | N∈ }.

　 Lemma. ＝ 「ω2 is a (non-neat) simplified (ω1, 1)-morass in the generic extension.

　 Proof. We check the following 6 items from Definition 2.6 on p.259 in [V].

　 • (well founded) There exists no proper ⊆-descending infinite sequence of members of . 
Let rank(a) denote the rank of a∈  w.r.t. the well founded relation.

　 • (homogeneous) For any a, b∈  with rank(a)＝ rank(b), there exists the isomorphism ϕab: 
(a, ＜)  (b, ＜) s.t. 「b:＝{y∈  | y⊆b (proper)}＝{the set of images ϕab[x] | x∈ 「a}.

　 •(locally small) For any a∈ , let | 「a | denote the size of 「a, then | 「a |＜ω1.
　 •(directed) For any a, b∈ , there exists c∈  with a, b⊆c.
　 • (locally almost directed) For any a∈ , either ( 「a, ⊆) is directed or there exists (a1, a2) 

s.t. rank(a1)＝rank(a2), ∆:＝a1∩a2＜a1\ ∆＜a2\ ∆≠ , and 「a＝{a1, a2}∪( 「a1)∪ ( 「a2).
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　 •(cover) ＝ω2.

　 (well founded) The following suffices.

　 Claim.

(1)  For any N, X∈  with N＝ω1 X, the map ϕNX restricted to ω2∩N is the isomorphism from 
(ω2∩N, ＜) onto (ω2∩X, ＜). In particular, the set of images ϕNX [ω2∩N]＝ω2∩X.

(2)  For any N, X∈  with ω2∩X⊆ω2∩N (proper), we have X ＜ω1 N.

Proof. (1) The set of ordinals ω2∩N is a definable class with no parameters in N. For x∈N,

x∈ω2∩N iff N ⊨“Transitive(x) and for all y∈x Transitive(y)”.

Hence, ϕNX[ω2∩N]＝ω2∩X.

　 (2) Take the intersections, we have ω1∩(ω2∩X)⊆ω1∩(ω2∩N) and so X ≤ ω1N . Suppose 
on the contrary that X＝ω1N , then ϕXN [ω2∩X]＝ω2∩N. But ω2∩X⊆X∩N. Hence, ϕXN [ω2∩X]
＝ω2∩X and so ω2∩X＝ω2∩N. This is absurd.

　 (homogeneous) and (locally small) The following suffices.

　 Claim.

(1) For any N∈ , let a＝ω2∩N, then we have 「a＝{ω2∩X | X∈ ∩N}.
(2)  For any N, X∈  with N＝ω1 X, two structures ( 「(ω2∩N), ⊆) and ( 「ω2∩X), ⊆) are 

isomorphic by a restriction of ϕNX. In particular, rank(ω2∩N)＝rank(ω2∩X).
(3) For any N, X∈ , N＝ω1 X iff rank(ω2∩N)＝rank(ω2∩X).

　 Proof. (1) For any X∈ ∩N, we haveω2∩X∈N and so ω2∩X⊆ω2∩N (proper). It remains 
to show 「a⊆{ω2∩X | X∈ ∩N}. Let b∈ 「a. Then there exists X∈  with ω2∩X＝b. Since 
ω2∩X⊆ω2∩N(proper), we have X＜ω1 N. Take Y∈  s.t. X∈Y＝ω1 N. Then  ϕYN (X)∈ ∩N,  
b＝ω2∩X⊆X∩N⊆Y∩N and so b＝ϕYN [b]＝ϕYN [ω2∩X]＝ω2∩ ϕYN [X]＝ω2∩ϕYN (X).

　 (2) We have the unique isomorphism f from (ω2∩N, ∈) onto (ω2∩X, ∈). The restriction of 
ϕNX to ω2∩N serves as the isomorphism f. Let b∈ 「(ω2∩N) with b＝ω2∩Y s.t. Y∈ ∩N, then 
f[b]＝ϕNX [b]＝ω2∩ϕNX (Y)∈ 「(ω2∩X). Let b, c∈ 「(ω2∩N) with Y, Z∈ ∩N s.t. b＝ω2∩Y 
and c＝ω2∩Z. Then b⊆c (proper) iffω2∩Y⊆ω2∩Z (proper) iffω2∩ϕNX (Y)⊆ω2∩ϕNX (Z) 
(proper) iff ϕNX [b]⊆ϕNX [c] (proper) iff f [b]⊆f[c] (proper). For any d∈ 「(ω2∩X) with d＝ω2∩
ϕNX (Y) and Y∈ ∩N, there exists e＝ω2∩Y∈ 「(ω2∩N) with f[e]＝f[ω2∩Y]＝ϕNX [ω2∩Y]＝
ω2∩ϕNX (Y)＝d.

　 (3) Suppose N＜ω1 X. Then take Y∈  with N∈Y＝ω1 X. Since ω2∩N∈ 「(ω2∩Y), we 
have rank(ω2∩N)＜ rank(ω2∩Y)＝rank(ω2∩X). Hence rank(ω2∩N)＜rank(ω2∩X). In 
particular, rank(ω2∩N)＝rank(ω2∩X) implies N＝ω1 X.

　 (directed) Let a, b∈  with N, X∈  s.t. a＝ω2∩N and b＝ω2∩X. Since ＝(Hω2)
V, 

there exists Z∈  with {N, X}∈Z and so N, X⊆Z. Then a, b⊆ω2∩Z∈ .

　 (locally almost directed) Let N∈  and look at 「(ω2∩N)＝{ω2∩X | X∈ ∩N}.
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　 Case. N∈dir( ): Then ( ∩N, ∈) is directed and so ( 「(ω2∩N), ⊆) is directed. To see 
this, let b, c∈ 「(ω2∩N) with Y, Z∈ ∩N s.t. b＝ω2∩Y and c＝ω2∩Z. Take W∈ ∩N with 
Y, Z∈W and so Y, Z⊆W . Then b, c⊆ω2∩W∈ 「(ω2∩N).

　 Case. N∈suc( ): Take (N1, N2) s.t. ∩N＝{N1, N2}∪( ∩N1)∪( ∩N2).

　 Subcase. N1＝N2: Then ( 「(ω2∩N), ⊆) is directed, as for any b∈ 「(ω2∩N), we have 
b⊆ω2∩N1＝ω2∩N2∈ 「(ω2∩N).

　 Subcase.  N1≠N2: Let a1＝ω2∩N1 and a2＝ω2∩N2.  Then we have rank(a1)＝rank(a2),  
「(ω2∩N)＝{a1, a2}∪( 「a1)∪( 「a2), and ∆ :＝a1∩a2＜a1\ ∆＜a2\ ∆≠ . 

　 (cover) Since ＝(Hω2)
V, we have ＝ω2.

The New Poset P

　 The partial order with the item (freeze) on P appeared in [M3] that is somewhat new 
compared to the posets in [M1] and [M2]. In particular, no finite fragments of fast functions are 
incorporated in p∈P.

　 Definition. Let p＝ p∈P, if

　 • (el with top) p is a finite subset of 0 with an N∈ p s.t. p＝( p∩N)∪{N}.
　 • (iso) If N, N´∈ p with N＝ω1 N´, then there exists the unique isomorphism ϕNN´: (N, ∈, · · ·) 

(N´, ∈, · · ·) s.t. ϕNN´(x)＝x for all x∈N∩N´.
　 • (up) If N3, N2∈ p with N3＜ω1 N2, then there exists N1∈ p s.t. N3∈N1＝ω1 N2.
　 • (down) If N1, N2, N3∈ p with N3∈N1＝ω1 N2, then ϕN1N2(N3)∈ p.
　 • (pre-partition) For any N∈ p, either p∩N＝  or there exists (N1, N2) s.t.
　　＊ p∩N＝{N1, N2}∪( p∩N1)∪( p∩N2).
　　＊�If N1≠N2, then N1＝ω1 N2 and ∆:＝(ω2∩N1)∩(ω2∩N2)＜(ω2∩N1)\ ∆＜(ω2∩N2)\ ∆≠ .

　 Prior to defining the partial order on P, we observe

　 Claim. (1) If N and N´ served as in the item (el with top), then N＝N´. We denote this 
unique element as Np called the top element of p.

(2)  (The immediate predecessors  N
p of N in p) If p is known to just satisfy (el), (iso), (up), 

and (down), then for any N∈ p, there exists the unique  N
p s.t. X＝ω1 Y for any X, Y∈  N

p 
and p∩N＝  N

p ∪ ∪ { p∩X | X∈  N
p }. Hence, if p∈P and N∈ p, then either  N

p＝  or 
 N
p ＝{N1, N2} that is either a singleton set or consists of two elements with the specification.

　 Proof. (1) Let ( p∩N)∪{N}＝ p＝( p∩N´)∪{N´}. Suppose N≠N´. Then N∈N´ and N´∈N. 
This is absurd.

　 (2) If p∩N＝ . Then  N
p＝  is the only choice. Let us suppose p∩N≠ . Let α＊ be the 

largest member of {αY | Y∈ p∩N}. Let ＝{X∈ p∩N | αX＝α＊}. Then X＝ω1 Y for any X, Y∈  
and
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p∩N＝ ∪ { p∩X | X∈ }.

　 (⊆): Let Z∈ p∩N. If αZ＝α＊, then Z∈ . If αZ＜α＊, then by (up) there exists Y∈ p s.t. 
Z∈Y and αY＝α＊. By (up) again, there exists N´∈ p s.t. Y∈N´＝ω1 N. Notice Z∈N∩N´. Then, 
by (iso) and (down), Z＝ϕN´N(Z)∈ϕN´N(Y)∈ p∩N. Since ϕN´N(Y)＝ω1 Y, we have ϕN´N(Y)∈ .

　 (uniqueness) Let  and  served. Then

∪ { p∩X | X∈ }＝ p∩N＝ ∪ { p∩Y | Y∈ }.

Let X∈ . Suffice to get X∈ . Suppose to the contrary X . Then X∈ p∩Y for some Y ∈ . 
Then X＜ω1 Y and so it is impossible to have Y∈ ∪ { p∩X´ | X´∈ }. This is absurd.

　 Definition. For p, q∈P , let q  p in P, if

　 • q⊇ p.
　 • (freeze) For any N∈ p, there exists Y∈( q∩N)∪{N} s.t.  N

p＝  Y
q.

　 Lemma. (P, ) is a poset.

　 Proof. (ref) Let p∈P. Then p  p in P.

　 (transitive) Let r  q  p in P. Let N∈ p. Suffice to find N2∈( r∩N)∪{N} s.t.  N
p＝  

r
N2.

Since q  p in P, there exists N1∈( q∩N )∪{N} s.t.  N
p＝  

q
N1. Since r  q in P, there exists  

N2∈( r∩N1)∪{N1} s.t.  
q
N1＝  

r
N2. Hence, we have  N

p＝  
r
N2 and N2∈( r∩N1)∪{N1}⊆ 

( r∩N)∪{N}.

　 Lemma. (Dense) (1) For p∈P and x∈Hω2, there exists q∈P s.t. q  p in P and x∈Nq.

(2)  Let (θ, N＊, P) be as usual. Let p∈P∩N＊. Then there exists q∈P s.t. q  p in P and N:＝
Hω2∩N＊∈ q.

　 Proof. (1) Let W∈ 0 with {p, x}∈W. Let q＝ p∪{W}. Then q∈P, q  p in P, and x∈Nq＝W.
　 (2) We have N:＝Hω2∩N＊∈ 0 and p∈P∩N. Let q＝ p∪{N}. Then q∈P, q  p in P and 
N∈ q.

　 Lemma. Let (θ, N＊, P) be as usual. Let p∈P s.t. N:＝Hω2∩N＊∈ p. Then p is (P, N＊)- 
strongly-generic. By this we mean that for any D⊆P∩N＊ that is predense in P∩N＊, we have D is 
predense below p in P.

　 Proof. Let D⊆P∩N＊＝P∩N be predense in P∩N. Want D is predense below p in P. To 
show this, let us take an arbitrary extension of p in P. Let us denote this extension by p again. 
Hence, N∈ p.
Since N＝ ( 0∩N), take W∈ 0∩N s.t. p∩N∈W. Let r＝( p∩N)∪{W}. Then r∈P∩N. 
Take q0∈P∩N and d∈D s.t. q0  r, d in P∩N. Hence,

　 •For any X∈ p∩N , there exists Y1∈( q0∩X)∪{X} s.t.  X
p＝  

q
Y1

0 .

　 Let q＝ p∪{ϕNN´(Z) | N´∈ p, N＝ω1 N´, Z∈ q0}. Then we know q satisfies (el with top), 
(iso), (up), (down), and (pre-partition). Hence, q∈P. Need to observe q  p, q0 in P. We have 
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q⊇ p, q0.

　 •If X∈ p with N＜ω1 X, then  X
p＝  X

q .
　 •  N

p＝  
r
W＝  

q
Y1

0 ＝
 
q
Y1  for some Y1∈( q0 ∩W)∪{W}⊆ q∩N⊆( q∩N)∪{N}.

　 • (copying) If N´∈ p s.t. N´＝ω1 N, then  
p
N´＝ϕNN´[

 N
p ]＝ϕNN´[

 
q
Y1 ]＝  

q 
ϕNN´(Y1), ϕNN´(Y1)∈

( q∩N´)∪{N´}.
　 •If X∈ p∩N, then  X

p＝  X
r ＝  

q
Y1

0 ＝
 
q
Y1   for some Y1∈( q0∩X)∪{X}⊆( q∩X)∪{X}.

　 • (copying) If X´∈ p, X∈ p∩N, and X´＝ω1 X, then  
p
X´＝ϕXX´[

 X
p ]＝ϕXX´[

 
q
Y1  ]＝  

q 
ϕXX´[Y1], 

and ϕXX´[Y1]∈( q∩X´)∪{X´}.

　 Hence, q  p in P.

　 •For X∈ q0, we have q∩X＝ q0∩X and so  X
q0＝

 X
q .

　 Hence, q  q0 in P.

　 Lemma. (CH) P has the ω2-cc.

　 Proof. Let 〈pi | i＜ω2〉 be indexed conditions of P. For each i＜ω2, let Ni∈ 0 s.t. {i, pi}⊆Ni. 
By CH, we may assume the Ni forms a delta system. For i < j, we may further assume that ∆:＝
(ω2∩Ni)∩(ω2∩Nj)＜(ω2∩Ni)\ ∆＜(ω2∩Nj)\ ∆≠  and there exists the isomorphism ϕNiNj: 
(Ni, ∈, pi)  (Nj, ∈, pj) s.t. ϕNiNj (x)＝x for any x∈Ni∩Nj. Fix two i＜j. Let N∈ 0 s.t. {Ni, Nj}∈N. 
Let q＝ pi

∪ pj
∪{Ni, Nj, N }. Then q∩Ni＝ pi

 and q∩Nj＝ pj
. Hence, q∈P and q  pi, 

pj in P.

　 Lemma. Let G be P -generic over V. In V [G], form

＝ G.

Then  satisfies (el), (iso), (up), (down), (2-partition), and (cof).

　 Proof. (2-partition) Let N∈ .

　 Case. {αX | X∈ ∩N} had no last element: We show N∈ dir( ). To this end, let {X1, X2}⊆
∩N. Want to find X0∈ ∩N s.t. {X1, X2}⊆X0. Let ξ＝sup{αX | X∈ ∩N}. Take p∈G s.t. {X1, 

X2, N}⊆ p. Then {X1, X2}⊆  N
p ∪ { p∩X | X∈  N

p },  N
p ＜ω1ξ and so there exists N2∈ ∩N 

s.t.  N
p ＜ω1 N2.

Take q∈G s.t. q  p and N2∈ q. Since q  p and N∈ p, there exists X0∈( q∩N)∪{N} s.t.
 N
p ＝  

q
X0. Then X0  ω1 N2. Hence {X1, X2}⊆  

q
X0∪ { p∩X | X∈  

q
X0}⊆X0∈ ∩N.

　 Case. {αX | X∈ ∩N} had the last element α＊: We show N∈ suc( ). Let

＝{X∈ ∩N | αX＝α＊}.

Let us fix any X0∈ . Let p∈G s.t. {N, X0}⊆ p.

　 Claim. ＝  N
p .

　 Proof. Since X0∈  N
p , we have ⊇  N

p . Conversely, we show ⊆  N
p . Let Y∈ . Take q∈G s.t. 
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q  p and Y∈ q. Since {N, Y}⊆ q, we must have Y∈  N
q . By (freeze), we have Z∈( q∩N) ∪{N} 

s.t.  N
p ＝  Z

q  However, we must have Z＝N. Hence, Y∈  N
p .

　 Claim. ∩N ＝  N
p ∪ { ∩X | X∈  N

p } and so N∈ suc( ).

　 Proof. It suffices to show ⊆. Let A∈ ∩N. Take q∈G s.t. q  p in P and A∈ q. We first 
observe  N

p ＝  N
q . Since q  p in P, we have  N

p ＝  Y
q for some Y∈( q∩N)∪{N}. Since α＊＜ 

αY  αN, we must have αY＝αN and so Y＝N. Hence  N
p ＝  N

q . Then

A∈ q∩N＝  N
q ∪ { q∩ X | X∈  N

q }⊆  N
p ∪ { ∩X | X∈  N

p }.
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