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Abstract 
 This study proposes the usage of complex numbers in node ranking calculations for a 
network. We calculate node scores in the graph by using the Hermitian adjacency matrix 
and the complex plane through an algorithm, called HermitianStatus. We then compare the 
result of the method to that of Google PageRank, which is a widely spread algorithm for 
search engines. In conclusion, HermitianStatus has advantages over PageRank. 
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1. Introduction 
 This study proposes an algorithm, called HermitianStatus, for calculating the node score in 
a network based on the link relation among nodes. The method expresses the link relations 
between the node using complex numbers. HermitianStatus is then compared to Google 
PageRank. 

2. PageRank 
 PageRank assigns authority weights to each node of a network based on the network link 
structure [1]. Google’s algorithm gives a high score to a node depending on the following 
three characteristics: node with (i) an in-link to it from a high score page; (ii) many in-links 
to the node; and (iii) selected out-links to it [2]. To realize these characteristics, PageRank 
employs the traditional adjacency matrix to represent a network. This matrix for the graph A 
= (V, E) is defined as follows, where  and  represent nodes in the graph : 

 

 In PageRank, the eigenvalue problem for matrix G, which is created from A, is solved 
using  to represent the maximal eigenvalue of G [3]. In the equation,  stands for the 
number of the nodes in the network, and,  represents the score of node . 
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where, the damping factor d  is used to create a strongly connected graph, G. In a 
strongly connected network, one can reach every node via nodes using the link directions.   
 The PageRank scores of network nodes are defined as the corresponding element values of 
the vector R. The damping factor value 0.85 is often used in PageRank. When applied to the 
net, PageRank's usage of the damping factor transforms the network to one strongly 
connected component. Figure 1 shows the PageRank ranking at a damping factor value of 
0.85 for the nodes in the network shown by the colors. 
 

3. HermitianStatus 

3.1. Hermitian adjacency matrix 
 HermitianStatus utilizes the Hermitian adjacency matrix to represent a network. This 
Hermitian matrix for the graph X  =  (V ,  E )  is defined as follows using i  to represent the 
imaginary unit [4] , where  and  represent nodes in the graph : 

 

3.2. Algorithm 
 In HermitianStatus, we decompose the entire network into weakly connected networks. A 
weakly connected network means one can reach every node via nodes if or if not one 
ignores the link direction. We presuppose that in every weakly connected network, one node 

(0 < d < 1)

u v

Huv =

1 if uv ∈ E and vu ∈ E;
i if uv ∈ E and vu ∉ E;

−i if uv ∉ E and vu ∈ E;
0 otherwise.

Figure 1: 5 node network with its 
PageRank result for the nodes (blue: 
low score and orange: high score).

Figure 2: 7 node network transformed 
from the network in Figure 1.

47A Novel Node Ranking Algorithm Using Complex Numbers: A Comparison to Google PageRank



exists without an in-link, and another exists without an out-link. With the algorithm, the 
lowest score is given for the former, while the highest score is assigned to the latter. 
The HermitianStatus algorithm will be elaborated below using the network in Figure 1 as an 
example. In this case, the weakly connected network constitutes the entire network. 

1. - Set the total node number N in the whole graph. In each weakly connected component 
of the entire graph, describe its node number as n and create the adjacency matrix A0.       
-In the case of the example network, the adjacency matrix is given as follows: 

 

2. - Add the following two dummy nodes and links to the weakly connected component.      
      First, the dummy node is n + 1 and links from the dummy to all network nodes. Second,  
      the dummy node is n + 2 and links to the dummy from all nodes, excluding the first   
       dummy. Create the adjacency matrix A for the transformed component.  
      - This matrix for the transformed network in Figure 2 is presented below as an example. 

 

3. - Create the Hermitian adjacency matrix H of A.  
    - The matrix for the transformed example network is presented as follows: 

 

4. - In H, replace each i  with 0 and change every −i  to  creating     

      H1.  
     - The next matrix for the example is H1. 

A0 =

0 1 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

A =

0 1 0 0 0 0 1
0 0 1 1 0 0 1
0 0 0 0 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 0 1
1 1 1 1 1 0 0
0 0 0 0 0 0 0

H =

0 i 0 0 0 −i i
−i 0 i i 0 −i i
0 −i 0 0 0 −i i
0 −i 0 0 i −i i
0 0 0 −i 0 −i i
i i i i i 0 0

−i −i −i −i −i 0 0

cos(−
π

2N
) + isin(−

π
2N

)
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5. - In H1, replace all diagonal elements 0s with −1, creating H2.  
    - The matrix in the example is presented below: 

 

6. - Solve the linear equation ,  where  vector b has the value of −1 for the  
      element corresponding to the node without an in-link and the values 0s for the remaining  
      elements.  
     - In the example, the equation is presented as 
 

 

7. - Locate x1,  x2,  and xn on the complex plane as vectors.  
    - Figure 3 depicts an example for this. 
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Figure 3: The fourth quadrant of the 
complex plane with the 7 vectors 

corresponding to the 7 nodes in the 
network transformed from the original 

network in Figure 1.

(3.1)
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8. Define the node ’s score, , on the complex plane. 

 

9. Multiply the  value by the th power of node ’s in-link number, creating  for . 
 

10. - Divide si2 by the k3th power of the multiplication of each out-link number of the nod           
on the path from the node without an in-link to the node excluding itself, , 
creating si3 for . 

 

11. - Multiply the value of si3 by the k4th power of the node number of the component, ,    
        setting  for xi. 

 

12. Change the scores of the nodes without an in-link to zero. 

ni si1

si1 = |xi | × {
2π − Arg(xi)

π
2N

}k1

si1 k2 xi si2 ni
si2 = Indegree(ni)k2 × si1

n1, …, ni−2, ni−1
ni

si3 =
si2

{(Outdegree(n1) × ⋯ × (Outdegree(ni−2) × (Outdegree(ni−1)}k3

n
si4

si4 =
si3

nk4

                                                            Table 1: Purpose and Description. 

1 Decomposition of the entire network into weakly connected components

2 Assuring even components without the lowest and highest score nodes to have them

3 Introducing imaginary numbers to be used on the complex plane.

4 Confining all the vectors corresponding to the nodes of the network into the fourth quadrant of the 
complex plane

5 For the liner equation in the next step

6 Earning the relative location of the vectors corresponding to the nodes on the complex plane and 
setting the vector corresponding to the node without in-link on the complex plane

7

8

9

10

11

12 Making all scores of the node without in-links 0.

Locating the vectors on the complex plane; each vector on the plane is the composition of  

clock wise rotated other vectors corresponding to the nodes from which the node has in-links.

π
2N

Using  (>0) for the third PageRank’s characteristic :(iii) selected out-links to it.k3

Changing  (>0) for the second characteristic of the Google algorithm: (ii) many in-links to the 
node.

k2

The parameter  (>0) refers to the node number of the weakly connected component the node is 
belonging to

k4

Adjusting  (>0) for the first characteristic of PageRank: 
(i) an in-link to it from a high score page 
 angle part of this definition corresponds to the number of links from the node with 0 in-link to the 
node, and, the vector length part of the formula represents the length of the vector.

k1
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 The standard HermitianStatus scores of the network nodes in Figure 1 resulted in s1 = 
10.0000000, s2 = 0.6308773, s3 = 0.6178998, s4 = 0.6178998, and s5 = 1.0000000 with k1 
= 1, k2 = 1, k3 = 1, and k4 = 1, respectively. This ranking is exactly the same as the 
PageRank result in Figure 1.  
 Table 1 presents the purposes and description of each step of the algorithm. Note that this 
algorithm is applied to each weakly connected component of the entire network. Moreover, 
we can compare the node scores of the nodes in different components, thanks to the node 
number of the entire network, N. 

4. Experimental Results 
 The programing language R and its Rcpp package were used. The package facilitates 
extending R with the C++ programing language [5]. These tools have been used on Linux to 
write programs for testing the algorithm and compare it to PageRank. The power method is 
the favorite algorithm for the PageRank problem [6], while the Householder method is often 
used for linear equations. Accordingly, the power method for the PageRank and the 
Householder for HermitianStatus were used herein. 

4.1. PageRank Reproductivity 
 Figure 4 shows the PageRank result at a damping factor value of 0.85 for a 60-node 
network. In this network, the strong orange color represents a high score, while the strong 
blue ones depict a low score. The Spearman's correlation coefficient of HermitianStatus 
compared to PageRank scores showed a high value of 0.9317358 achieved at the parameter 
values of k1 = 10, k2 = 7, k 3 =  1, and k4 = 0.5. Figure 5 shows the scatter plot of the 
PageRank and HermitianStatus scores. 

Figure 4:　60 node network with its 
PageRank result for the nodes (blue: 
low score and orange: high score).

Figure 5: Scatter Plot of the PageRank scores and 
(standard) HermitianStatus scores of the nodes in 

the network in Figure 2.
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4.2. Calculation Cost Efficiency 
 Ten networks were randomly created. Figure 6 illustrates the node numbers of these graphs. 
A probability value of 0.25 was used for the link between every node in each graph. The 
node calculation times for each network by PageRank and HermitianStatus were then 
compared. 

5. Final Remarks 
 HermitianStatus reproduced the PageRank result well. Moreover, it achieved efficient 
calculations over PageRank. The future research will include showing that these points 
stand for larger networks. With large networks, showing systematical parameter changes 
leads to desirable results. 
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