
南山大学大学院
博士（数理科学）論文

A Study on Operations Research Methods to Improve Efficiency

of University Administrations

– オペレーションズ・リサーチによる大学業務効率化の研究 –

July 23, 2021

Aino Ohnishi

Graduate Program of Systems and Mathematical Sciences

Graduate School of Science and Engineering

Nanzan University

Abstract

In many universities, the following three tasks are often performed manually by staff: assign-

ing teaching assistants (TAs) to work shifts, assigning classrooms to classes, and arranging books

on a shelf in the library. With constraints such as university’s equipment and requirements of

professors and students, it is complex and time-consuming to complete the tasks.

This research aims to propose practical methods using Operations Research (OR) to solve

the above problems of the university, put these methods to practical use, and contribute to the

reduction of the burden on the university staff and the cost of university management.

Nanzan University is also facing problems: the shift scheduling problem for TAs, the class-

room assignment problem, and the book relocation problem. Therefore, we propose methods,

as a concrete example, for solving the problems in Nanzan University: Additionally, we imple-

mented support systems based on the methods for TA shift scheduling and classroom assignment.

The actual data of Nanzan University are used for the analysis of the performance of the systems,

and some computational experiments were reported to illustrate the behavior of the systems.

Our implemented system can flexibly respond to different conditions and provide an assign-

ment quickly and reduce the workload of the staff. The system uses a model that consists of

general conditions applicable to most universities and conditions specific to Nanzan University.

Therefore, the system can be easily introduced to other universities only by modifying functions

to acquire data from the on-campus database or customizing the system to exclude consider the

conditions specific to Nanzan University. Thus, we can contribute to improving the operational

efficiency in many universities.

i

Contents

1 Introduction 1

2 TA Shift Scheduling Support System

– Student Support Desk in Nanzan University – 4

2.1 Background of the TA Shift Scheduling Problem 4

2.2 Model of the TA Shift Scheduling Problem 7

2.3 Computational Experiments . 10

2.4 Implementation of the TA Shift Scheduling Support System 10

3 Classroom Assignment Support System 12

3.1 Background of the Classroom Assignment Problem 12

3.1.1 Common conditions for universities 13

3.1.2 Specific conditions at Nanzan University 14

3.2 Model of the Classroom Assignment Problem 15

3.3 Computational Experiments . 23

3.4 Implementation of the Classroom Assignment Support System 25

4 Optimal Relocation Plan for Improving Management of Bookshelves 28

4.1 Background of the Book Relocation Problem 28

4.2 Model of the Book Relocation Problem . 30

4.3 Computational Experiments . 35

5 Conclusion 37

Acknowledgment 38

Bibliography 39

ii

List of Figures

2.1 The academic calendar in quarter system . 4

2.2 The user interface of the TA shift scheduling support system 11

2.3 The user interface of the TA shift scheduling support system 11

3.1 Example of a weekly timetable for classes . 14

3.2 Example of Problem 1 network . 19

3.3 The user interface of the classroom assignment support system 26

3.4 Example of part of the database . 26

4.1 An example of actual vacant shelves . 28

4.2 An example of a space of width occupied by books in a book group 30

4.3 An example of bookshelf groups . 31

4.4 The distance to carry books from the current positions to the newly assigned

position . 32

4.5 Bookshelves on the second floor of Nanzan University Library 36

iii

List of Tables

2.1 The vacation term . 5

2.2 The exam term . 5

2.3 The class term . 5

3.1
Size and central processing unit (CPU) time of the classroom assignment problems

in the cases of 2019 24

3.2
Size and central processing unit (CPU) time of the classroom assignment problems

in the cases of 2021 25

4.1 Actual data in Nanzan University Library . 35

iv

Chapter 1

Introduction

The environment surrounding universities has been changing due to the influence of global

strategies and the strengthening of the universities’ international competitiveness. In this situa-

tion, universities are required to meet society’s expectations by implementing academic reforms

that respond to the changing times and needs. Consequently, universities are required to im-

prove their service levels every year, and the amount of work that university staff need to take

is steadily increasing. Taking universities in Japan as an example, we determine that their busi-

ness environment is becoming severe because of the declining population of 18 year olds, the

age of university entrance. In fact, the number of applicants to private universities in 2021 has

decreased by about 12%, which will inevitably have a serious impact on university management

in the future. In anticipation of a society with a declining 18-year-old population, universities

in Japan are beginning to consider collaboration and integration of national, public, and private

universities.

To handle the ever-increasing business and improve the operational efficiency of admin-

istration and service quality for students, many universities currently use information sys-

tems. Several universities have improved their operational efficiency and service quality using

Operations Research (OR), and some have developed business support systems for practical

use [2, 5, 7, 8, 17, 21].

Nanzan University, the subject of our case studies, has about 170 staff, 9,000 students, and

790 teachers. In the past, OR has been introduced to its management to improve the opera-

tional efficiency and service quality [25]. Many assignment-related problems, such as scheduling

problem of school bus and school timetable, and the problem of assigning proctors for entrance

examinations, have been solved using various techniques. For example, the proctor assignment

problem was solved using Linear Programming. The implemented system in existing litera-

ture [28] has been used at Nanzan University for 16 years. However, many assignment problems

are still solved manually. The staff still spend a large amount of time and effort to solve the

following problems:

• Shift scheduling problem for teaching assistants (TAs)

• Classroom assignment problem

• Book relocation problem

These assignment problems relate to properly distributing university resources with consider-

ation of the equipment, capacity, quantity of resources, and requirements of professors, students,

and staff. At many universities, the scheduling task mentioned above is manually performed

by the staff. The larger the university, the more is the effort required. As we will explain

later in Chapters 2 – 4, the problems must be solved considering not only the operational rules

and requirements in the university but also the requirements of professors, students, and staff

that must be satisfied. Therefore, these problems are complex and extremely difficult and have

1

burdened the staff for many years. Four years ago, Nanzan University introduced the quarter

system, which has also been used by some universities in Japan. The quarter system divides the

academic year into four terms (Q1, Q2, Q3, and Q4), where each quarter includes eight weeks.

The system further complicates the assignment rules and increases the burden on the staff. This

process related to educational support often burdens the limited number of experienced staff

members, who attempt to determine a feasible assignment, as if solving a puzzle single-handedly.

Therefore, the transfer or retirement of these professionals can cause major problems for the

university, such as long working hours and the problem of labor costs.

Owing to the COVID-19 pandemic, the administration of Nanzan University has faced an

exceptional situation and transitioned to on-line classes. However, some classes are offered on-

campus under certain conditions, such as with a limited number of students in a classroom,

in an attempt to curb the widespread of COVID-19. Therefore, as the number of students

taking the classes from their home or in the classroom using their own devices has increased, the

number of inquiries regarding network services and the amount of TAs work have also increased

significantly. Furthermore, depending on the context of the infection spread, the staff need

to consider more complex requirements for the classroom capacity when assigning classrooms.

In recent years, in Nanzan University Library (NUL), a business support system has just been

introduced as part of the university’s information system. Meanwhile, the problem is maintaining

a variety of books that have not yet been digitized over the years.

Several commercial systems can be used to reduce the effort required to perform an assign-

ment [30, 31, 32, 33, 34]; however, there are concerns regarding the introduction cost, assignment

quality, usability, and system maintenance. Staff may not be able to obtain assignments that

completely fulfill the specific requirements of professors, students, and staff because the systems

do not use OR. In addition, owing to frequently changing professors and students’ requirements,

the predetermined assignments may need to be changed according to new requirements. Even

if commercial systems with maximum functionality are used, modifying the result is not usually

supported. Furthermore, additional costs may be incurred for updating the conditions in the

system to meet unsupported requirements. Therefore, the staff perform reassignment manually,

which takes time and effort.

Thus, assignment support systems using OR have been developed in previous research. How-

ever, many universities have not yet used these systems and instead spend a long time manually

performing assignments. One of the underlying reasons is that the staff do not have enough

OR knowledge. They are, therefore, concerned about system maintenance if they change the

conditions for problem-solving. Furthermore, they may not be able to reduce the workload

commensurate with the cost of introducing the system.

We apply few conditions of the models proposed in previous research to Nanzan University.

However, Nanzan University also has unique conditions; thus, the assignment problem cannot

be solved using the model introduced in the literature. Therefore, the original models for solving

the problems at Nanzan University must be constructed using OR to reduce the burden on the

staff.

This research presents our implemented interactive assignment support systems: the sup-

port systems for shift scheduling for TAs and classroom assignment. The systems can provide

an assignment quickly and reduce the staff’s workload. We implemented the Microsoft Excel1

and Access1 systems using the Visual Basic for Applications1 (VBA) programming language,

2

the Python programming language, and the Python optimization package, MIPCL. To develop

the system, we considered the requirements of the staff, professors, and students. Then, we

incorporated these requirements into the system as much as possible. Previous studies have

demonstrated that systems are considered practical if they can modify conditions and assign-

ments as necessary [11, 24]. Therefore, we designed the system so that the staff can perform the

assignment by changing parameters. The staff can also fix a part of the obtained assignment

and reassign it with the revised conditions. We expect the staff to feel comfortable using and

accepting the system because they can flexibly respond to different conditions and obtain the

final assignment while modifying them several times based on their experience and knowledge.

We will then receive feedback from the staff about improving the effectiveness and user-

friendliness of the systems. Moreover, we will continue to improve the systems and verify the

quality of the solution, usability, and usefulness.

The remainder of this paper is organized as follows: Chapters 2, 3, and 4 present the shift

scheduling problem for TAs, the classroom assignment problem, and the book relocation prob-

lem, respectively. In particular, Chapters 3 and 4 are organized as follows: the background

of the problem (Section 1), the approach to solve the problem including the description of the

constraints and the objective function of the model (Section 2), and the results of computational

experiments (Section 3). Additionally, we introduce the shift scheduling support system for TAs

in Section 4 of Chapter 2 and the classroom assignment support system in Section 4 of Chapter

3. We conclude the paper in Chapter 5 with conclusions and future works.

3

Chapter 2

TA Shift Scheduling Support System

– Student Support Desk in Nanzan University –

This chapter explains the TA shift schedule at the student support desk in Nanzan University.

2.1　Background of the TA Shift Scheduling Problem

In Nanzan University, the campus network services (called AXIA: Advanced eXchange for

Information Access) are provided to students and professors. The students perform connections

to this service using their own devices or PCs in the classrooms. They use the service to register

for classes, check their timetables, and submit their reports. However, if the students cannot

connect to the network well, about 30 TAs at the student support desk will respond to questions

and consultations regarding student network services.

Currently, outsourced staff and experienced TAs (i.e., Schedulers) are the ones assigning TAs

at the student support desk in parallel with daily works and support works for students. As

illustrated in Figure 2.1, the quarter system divides the academic year into three types of terms:

vacation terms, four exam terms, and four class terms, respectively.

Figure 2.1: The academic calendar in quarter system

The support desk is opened in the following three terms (11 scheduling periods) in a year.

• Vacation term (spring, summer, and winter)

• Exam term (Q1, Q2, Q3, and Q4)

• Class term (Q1, Q2, Q3, and Q4)

Because of the introduction of the quarter system, the schedulers must manually perform

the assignments of TAs 11 times a year, which takes time and effort.

We call each working day and each time zone “shift.” The TAs repeatedly work for the

assigned shifts during each scheduling period. Tables 2.1 – 2.3 present the shifts for each term.

As shown in Tables 2.1 – 2.3, the number of TAs required for each shift is different.

4

Table 2.1: The vacation term

Number of TA required

Shifts Hours Mon Tue Wed Thu Fri Sat Sun

Morning (Sat) 9:15 – 13:15 4.0h 2 2 2 2 2 1 0

Afternoon (Sat) 13:15 – 17:15 4.0h 2 2 2 2 2 1 0

Morning 9:15 – 13:15 4.0h 1 1 0 0 1 1 0

Afternoon 13:15 – 17:15 4.0h 1 1 0 0 1 0 0

Third period 13:30 – 15:00 1.5h 0 0 0 0 0 1 0

Table 2.2: The exam term

Number of TAs required

Shifts Hours Mon Tue Wed Thu Fri Sat Sun

A exam 9:20 – 11:50 2.5h 1 1 1 1 1 0 0

B exam 11:50 – 13:20 1.5h 1 1 1 1 1 0 0

C exam 13:20 – 16:50 3.5h 1 1 1 1 1 0 0

D exam 16:50 – 20:50 4.0h 1 1 1 1 1 0 0

Table 2.3: The class term

Number of TAs required

Shifts Hours Mon Tue Wed Thu Fri Sat Sun

First period 9:20 – 10:50 1.5h 3 3 3 3 3 0 0

Second period 11:05 – 12:35 1.5h 3 3 3 3 3 0 0

Lunch time 12:30 – 13:30 1.0h 3 3 3 3 3 0 0

Third period 13:30 – 15:00 1.5h 3 3 3 3 3 0 0

Fourth period 15:15 – 16:45 1.5h 3 3 3 3 3 0 0

After class 16:50 – 20:50 4.0h 2 2 2 2 2 0 0

Maintenance 16:50 – 19:20 2.5h 3 0 0 3 0 0 0

Support 17:00 – 18:30 1.5h 1 0 0 1 0 0 0

Morning 9:15 – 13:15 4.0h 0 0 0 0 0 1 0

Afternoon 13:15 – 17:15 4.0h 0 0 0 0 0 1 0

TAs should be assigned to the shifts during the time zones when they do not have classes.

The schedulers receive the requirements of the TAs regarding the shifts before performing the

assignment. Then, based on the requirements of TAs, they manually assign the TAs to the shifts

for each scheduling period, considering the number of shifts and working hours.

The schedulers consider the following conditions when they perform the assignments:

(i) If there are TAs who require the same number of shifts or working hours, the schedulers

5

assign them to the shifts so that their number of shifts and working hours are equal.

(ii) For TAs who are assigned multiple shifts a day, the staff assign the TAs so that there is no

idle time between shifts.

TAs should master their work equally because some TAs are graduates whereas others are

beginners. Furthermore, each TA hands over the consultations received from the students to

the next support TA at the end of his shift. It takes a bit of time because they need to discuss

the type of support the students need. Thus, the schedulers perform the assignment while

considering conditions (i) and (ii).

They also consider the following conditions:

• Saturday shifts assigned to each TA should be once or less in each quarter.

• After-school shifts assigned to each TA should be once or less a week in each quarter.

• No more than one beginner TA can be assigned to each shift.

Moreover, the schedulers need to consider a Labor Contract Based on Rules of Employment

as follows:

• A TA can work within 7 hours a day.

• A TA can work four days or less a week from Monday to Saturday.

Assigning the TAs to the shifts is performed based on the staff experience; however, it

takes a long time to satisfy the above conditions. The staff and 7 TAs have spent about 245

hours manually assigning the class term of Q1 and Q2 in 2018 (including the support times

for students). The number of working hours and idle time between shifts have some deviations

because the staff perform the assignment manually.

Furthermore, the current method also has difficulty changing the assignment. For example,

if we want to modify only a part of the assignment for one TA, we need to review whether the

entire assignment violates the conditions visually. In some cases, we may need to modify the

entire assignment significantly. The current method is also very inefficient when modifying the

assignment.

The shift scheduling problem has often been studied on the assignment decisions, that is,

which staff to which work in which time zones and perform an assignment. The methods

proposed in these studies are often applied to medical facilities [10, 20, 22, 23, 27], and a typical

example is the shift scheduling for nurses [9]. Meanwhile, in many universities, the methods

are still not applied to shift scheduling problems, and studies on shift scheduling for TAs are

scant. For example, Adrianto [1] proposed particle swarm optimization to solve the problem

of scheduling TAs at Binus University. The comparison using particle swarm optimization

and genetic algorithm for timetable scheduling was discussed; however, it has not been put to

practical use.

A scheduling support system for part-time employees that is similar to TAs with variable

requirements has been developed in previous research [26], and several commercial systems also

exist [30, 31, 32]. However, they do not take into account conditions (i) and (ii).

Thus, we have proposed a more efficient shift scheduling method. Specifically, we imple-

mented a TA shift scheduling support system that can import the shift requirements gathered

6

from TAs and perform an assignment based on them. This system can be used to provide

an assignment that satisfies the conditions and requirements quickly and reduces the staff’s

workload.

2.2　Model of the TA Shift Scheduling Problem

This section introduces the formulation of the TA shift scheduling problem as 0-1 integer

programming problem.

We can solve the problems of vacation and exam terms using the same formulation. Mean-

while, the problem of class term can be solved by changing some formulations for the problems

of vacation and exam terms. We first present a formulation of the vacation and exam terms’

problem. Then, we describe the formulation for the class term.

Notation of the problems of vacation and exam terms

Index sets

T : the set of TAs

Tb : the set of beginner TAs, Tb ⊂ T

Td : the set of dummy TAs

P : the set of days in a scheduling period, P = E ∪G

E : the set of days of weekday, E = {1, 2, ..., 5} ⊂ P

G : the set of days of Saturday, G ⊂ P

S : the set of shifts, S = {1, 2, ..., s}

Sw : the set of shifts that have an upper bound of the number of times in a weekday,

Sw ⊂ S

Parameters

Rt : the assignment priority of TA t (the lower takes priority)

Ls : the working hours of shift s

K : the number of weeks

H+ : the upper bound of working hours in a day

M+ : the upper bound of working hours on weekdays

Q+ : the upper bound of working hours on Saturdays

I+ : the upper bound of working days in a scheduling period

I− : the lower bound of working days in a scheduling period

C+ : the upper bound of the number of shifts in a week

At : the number of shift requirements of each TA

B+ : the upper bound of the number of beginner TAs

Nps : the number of TAs required for shift s on day p

7

Otps =

{
1 : if TA t can be assigned to shift s on day p

0 : otherwise

Ftps =

{
1 : if TA t is fixed to shift s on day p

0 : otherwise

α, β, γ, δ, ϵ, ζ, η :

the weights that determine the priority of each term in the objective function,

α ≥ 0, β ≥ 0, γ ≥ 0, δ ≥ 0, ϵ ≥ 0, ζ ≥ 0, η ≥ 0

Variables

xtps =

{
1 : if TA t is assigned to shift s on day p

0 : otherwise

ytp =

{
1 : if TA t is assigned to shifts on day p

0 : otherwise

u1t : the variable for relaxing the lower bound of working days in a scheduling period for

TA t

u2t : the variable for relaxing the lower bound of the total number of shifts for TA t

vtps : the variable for minimizing idle time between shift s and shift s′ on day p for TA t

Formulation of the problems of the vacation and exam terms

min .
∑
t∈T

∑
p∈P

ytp + α
∑
t∈Td

∑
p∈P

∑
s∈S

xtps + β
∑
t∈T

∑
p∈P

∑
s∈S

Rtxtps

+γ
∑
t∈T

u1t + δ
∑
t∈T

u2t + ϵ
∑
t∈T

∑
p∈P

∑
s∈S

vtps (2.1)

s.t. xtps ≤ ytp, t ∈ T, p ∈ P, s ∈ S (2.2)

I− − u1t ≤
∑
p∈P

ytp ≤ I+, t ∈ T (2.3)

∑
p∈P

∑
s∈S

xtps ≥ At − u2t , t ∈ T (2.4)

xtps − xt,p,s+1 ≤ vtps, t ∈ T, p ∈ P, s ∈ S \ {s} (2.5)∑
s∈S

Lsxtps ≤ H+, t ∈ T, p ∈ P (2.6)∑
t∈Tb

xtps ≤ B+, p ∈ P, s ∈ S (2.7)

∑
t∈T∪Td

xtps = Nps, p ∈ P, s ∈ S (2.8)

xtps ≤ Otps, t ∈ T, p ∈ P, s ∈ S (2.9)

xtps ≥ Ftps, t ∈ T, p ∈ P, s ∈ S (2.10)

xtps ∈ {0, 1}, t ∈ T, p ∈ P, s ∈ S

ytp ∈ {0, 1}, t ∈ T, p ∈ P (2.11)

8

u1t ≥ 0, u2t ≥ 0, t ∈ T (2.12)

vtps ≥ 0, t ∈ T, p ∈ P, s ∈ S \ {s} (2.13)

In the formulation above, we minimize the objective function (2.1) which is the sum of the

relaxation variables for constraints (2.2) − (2.5). Considering the requirements of the TAs, we

may not be able to assign any TA to a shift, making the problem infeasible. To avoid this, we

add virtual dummy TAs with no limit that can be assigned to any shifts. Therefore, the second

term of the objective function is the number of shifts that the dummy TAs are assigned. In

addition, the sixth term of the objective function assigns the higher priority TAs as much as

possible.

As shown in constraint (2.2), the variable ydp is used to control the number of days for each

TA in a scheduling period. By using ydp, constraint (2.3) is the upper and lower bounds of

the number of days that each TA can be assigned to shifts in a scheduling period. Constraint

(2.4) indicates the necessity to satisfy the number of shift requirements for all TAs. Meanwhile,

constraint (2.5) means that we minimize idle time between shifts on day d for each TA. Constraint

(2.6) means that each TA has a upper bound of working hours in a day. Constraint (2.7) is the

upper bound of the number of beginner TAs of shift s on day d. Constraint (2.8) is the number

of TAs required for shift s on day d. Constraint (2.9) means that TA t can only be assigned

to workable shift s on day d. Constraint (2.10) means that TA t is fixed to shift s on day d.

Constraint (2.11) is a binary constraint, while constraints (2.12) and (2.13) are non-negativity

constraints.

Each scheduling period of the class term is 8 weeks; however, because the weekday assignment

is fixed, the fixed shifts from Monday to Friday is repeated every week. Therefore, the actual

scheduling period is 5 days from Monday to Friday and the number of days on Saturday in

a quarter. However, we need to consider the Labor Contract Based on Rules of Employment

and calculate the number of shifts and working hours for the total number of weeks, even on

weekdays. In addition, during the class term, some shifts that have the upper bound of the

number of times in a week.

Hence, in the formulation of the problem of class term, we change the objective function

(2.1) as follows:

min .
∑
t∈T

∑
p∈P

ytd + α
∑
t∈Td

∑
p∈P

∑
s∈S

xtds + β
∑
t∈T

∑
p∈P

∑
s∈S

Rtxtds

+γ
∑
t∈T

u1t + δ
∑
t∈T

u2t + ϵ
∑
t∈T

∑
p∈P

∑
s∈S

vtps + ζ
∑
t∈T

u3t + η
∑
t∈T

u4t (2.14)

Then, the following constraints are added to the formulation of the vacation and exam terms.

s.t.
∑
p∈E

∑
s∈S

K(Lsxtps) ≤ M+ + u3t ,∑
p∈G

∑
s∈S

Lsxtps ≤ Q+ + u4t , t ∈ T (2.15)

∑
p∈P

∑
s∈Sw

xtps ≤ C+, t ∈ T (2.16)

u3t ≥ 0, u4t ≥ 0, t ∈ T (2.17)

9

Additionally, we change constraint (2.3) as follows:

I− − u1t ≤
∑
p∈E

ytp + ytp′ ≤ I+, t ∈ T, p′ ∈ G (2.18)

In the formulation above, we add the sum of the relaxation variables for constraints (2.15)−
(2.16) and change the objective function (2.1) as (2.14). Constraint (2.15) is the upper bound

of working hours for each TA in a weekday and on Saturday. Constraint (2.16) is the upper

bound of the number of times can be assigned to shift s ∈ Sw in a week. Constraint (2.17) is

a non-negativity constraint. Constraint (2.18) is the upper and lower bounds of the number of

days that each TA can be assigned to shifts in a week.

2.3　Computational Experiments

This section presents the results of computational experiments using the model introduced

in Section 2.2.

We assigned the TAs to the shifts based on the data of the class term at the student support

desk at Nanzan University. We obtained an optimal assignment of Q4 in 2018 and assigned 37

TAs (including 4 dummy TAs) to 10 shifts on 5 weekdays and 8 Saturdays. It took 7 seconds

to obtain the optimal solution.

We asked the staff to evaluate the assignment of Q3 and Q4 in 2018, and received the

following comments: As a result of using the system, compared to their manual work in Q1 and

Q2 of the same year, we reduced the working time from 245 hours to about 1/25 of 10 hours.

By quickly obtaining an initial assignment that satisfies all the conditions and the requirements,

we reduced the load of scheduling and improved the assignment preparation time.

We used CBC (COIN-OR Branch and Cut) as our solver with the model implemented in

Python 3.7.2. The assignment was performed on a computer running Microsoft Windows 101,

with an Intel R⃝ CoreTM i7-8550U2 CPU and 16 GB of RAM.

2.4　 Implementation of the TA Shift Scheduling Support System

This section introduces a TA shift scheduling support system that we developed using the

model introduced in Section 2.2.

We implemented the TA shift scheduling support system on Microsoft Excel using the VBA

programming language in Excel, the Python programming language, and the Linear optimization

wrapper module, mypulp. Figures 2.2 and 2.3 present the user interface of the system. The

staff can operate the system by clicking the buttons on the screen.

We will enter the basic information of shifts: the working days, time zones, and the number of

TAs for each shift. Then, we will enter the requirements of TAs. As illustrated in Figure 2.2, we

will push the “Import” button and register everything in one bunch using Excel files gathered

from TAs. Finally, we will push the “Scheduling” button and solve the formulation that we

introduced.

As illustrated in the upper right of Figure 2.3, we designed the system so that staff can per-

form the assignment by changing the weights that determine the priority of objective function’s

10

Figure 2.2: The user interface of the TA shift scheduling support system

Figure 2.3: The user interface of the TA shift scheduling support system

term. The addition of this feature is the newest requirement from the staff.

If the dummy TAs are assigned to the shifts, the staff prefer not to assign these dummy TAs

because they need to revise the conditions and reassign them. Therefore, we set the weight of

the second term (the number of shifts to assign the dummy TAs) to the maximum in each term

of the objective function.

We designed the system so that staff can assign by changing parameters, such as TAs and

shifts. In addition, they can fix a part of the obtained assignment and reassign TAs with the

revised conditions.

11

Chapter 3

Classroom Assignment Support System

This chapter explains the assignment of classrooms for the university timetable.

3.1　Background of the Classroom Assignment Problem

The classroom assignment problem is the problem of assigning classrooms to classes con-

sidering the classroom equipment, classroom capacity, number of students taking the classes,

and requirements of professors and students for the classes. Not only the operational rules and

requirements in the timetable, but also the requirements of professors and students must be

met in this problem. Particularly, the professors’ equipment requirements and students’ desired

classes must be considered. Therefore, this problem is complex and extremely difficult; it has

been a burden on the staff for many years.

The classroom assignment problem has often been studied as part of the university timetabling

problem and reported in the literature as a difficult problem [3, 12]. In the literature, researchers

have proposed various methods to solve this problem; however, each university has its own cur-

riculum and course rules. Therefore, proposing a general class assignment model and solution

method is difficult. Under these circumstances, universities have considered their unique mod-

els. Most researchers have proposed a method for solving the timetable scheduling problem

and classroom assignment problem simultaneously. Alternatively, they proposed a hierarchical

two-phase solution approach: timetable scheduling followed by classroom assignment.

Nanzan University currently uses a hierarchical two-phase approach for performing timetable

and classroom assignment, and few conditions of the models proposed in previous research are

also applied. However, Nanzan University also has unique conditions; thus, the assignment

problem cannot be solved using the model introduced in the literature. Therefore, an original

model must be constructed for solving the classroom assignment problem at Nanzan University

using OR to reduce the burden on the staff.

In 2019, researchers [6] formulated the classroom assignment problem based on the newly

introduced quarter system of Nanzan University as a 0-1 integer programming problem. Al-

though they solved the problem quickly using Gurobi Optimizer, they have not yet constructed

a practical model. In the same year, we formulated the problem as a 0-1 integer programming

problem and developed a system to solve the problem using the Python optimization package,

MIPCL [19]. However, a long computation time was required to find a solution owing to the

large problem size. In fact, we solved the problem of assigning 271 classes to 255 classrooms

by using the model, and it takes about 900 seconds. Thus, in 2021, we improved this method

and formulated the classroom assignment problem as a linear programming problem to provide

a solution in a shorter time.

At Nanzan University, a specific staff member manually performs the timetable and classroom

assignment. Although professional staff carefully perform the assignment, a manually performed

12

assignment is often incomplete, and professors and students are often dissatisfied with it.

This chapter considers a model that assigns classrooms to classes in a given timetable while

satisfying strict curriculum constraints. We divide the model’s conditions into general conditions

applied to almost every university and conditions specific to Nanzan University. Then, we

describe the conditions that can be easily applied to other universities and those specific to

Nanzan University.

The following describes the conditions that must be considered in the classroom assignment

problem.

3.1.1　 Common conditions for universities

In many universities, the timetable and classroom assignment are almost the same every

year to reduce the staff’s burden unless the curriculum is revised. Nevertheless, the assignment

must be changed according to the cancellation of classes, the beginning of new classes, changes

to the professors of the classes, and changes to the number of registered students.

Classes are offered according to the following rules:

1. Classes are offered in any of the first to fifth periods from Monday to Friday (the first

and second periods are in the morning; the third, fourth, and fifth periods are in the

afternoon).

2. The academic year consists of two semesters (spring semester and fall semester), and each

class is offered 15 times, once a week, in either semester.

3. Each class is offered in a fixed period on a fixed day of the week during the semester.

Therefore, the staff must perform a weekly schedule of classroom assignments for each

semester.

From these rules, classroom assignments for a period do not affect any other period’s as-

signment. In other words, we can independently consider classroom assignments for each period

each day of the week per semester, where each assignment has the following two constraints:

(i) One classroom should be assigned to each class.

(ii) One classroom cannot be assigned to more than one class at the same time.

In addition to these constraints, many universities also consider the following conditions.

(iii) Each professor has requirements for the equipment in the assigned classrooms.

- The staff must assign classrooms to classes considering those requirements as the

equipment of each classroom differs, such as the types of seats and audiovisual equip-

ment.

(iv) Every classroom has a capacity limit.

- After students register for or change classes, if the number of registered students

exceeded classroom capacity, the staff must modify the assignment immediately.

13

3.1.2　 Specific conditions at Nanzan University

Under the quarter system at Nanzan University, some classes offer two lectures per week to

complete 15 lectures in a quarter, which we call “twin classes.” We further classify twin classes

into two types according to when the two lectures are offered in a week. One type offers two

lectures in consecutive periods on the same day of a week, while the other offers two lectures

in the same period on a different day of the week. We call these two types of classes “serial

classes” and “parallel classes,” respectively. In addition, we call a class that offers one lecture

per week a “single class.” Note that any class is not offered on Wednesday afternoon at Nanzan

University.

• Serial classes are offered according to one of the following rules:

- First and second periods on any day from Monday to Friday

- Third and fourth periods on any day from Monday to Friday except Wednesday

• Parallel classes are offered according to one of the following rules:

- Same period on Mondays and Thursdays

- Same period on Tuesdays and Fridays

Figure 3.1 presents an example of the weekly timetable. Each symbol represents one class,

and each alphabetical letter in parentheses represents a professor. If more than one professor

leads a class, one of them is considered the representative professor of the class.

Figure 3.1: Example of a weekly timetable for classes

As illustrated in Figure 3.1, the classes that are offered by the same representative professor

in consecutive periods are called “consecutive classes.” At Nanzan University, although the staff

perform a classroom assignment while considering up to three requirements of the professor (e.g.,

a whiteboard, a projector, and a lecture theater), much time and effort is required to satisfy all

these requirements.

Additionally, the same classroom or nearby classrooms must be assigned to not only parallel

classes, but also consecutive classes. This is because the staff must consider both the professors’

requirements and the time it takes for the professor to travel to the next class. However, two

classrooms located far away from each other are occasionally assigned to classes because the

staff cannot find an appropriate assignment. If a class is both a parallel class and a consecutive

class, we consider the class to be a consecutive class. For example, we must assign the same

classroom or nearby classrooms to the following classes (Figure 3.1):

14

- Class ○ in the third and fourth periods on Mondays by professor A

- Class ◇ and class ★ in the first and second periods on Tuesdays by professor D

- Class ■ and class △ in the third and fourth periods on Tuesdays by professor E

The staff prepare an assignment based on the number of students registered in the previous

year before the registration time period of each quarter. Students can register for the classes

they want to take twice a year and change them four times a year before each quarter. More

precisely, the number of students changes in the following two times:

1. The time period to register for classes (during the three days immediately before Q1 and

Q3): Students register for the classes they want to take.

2. The time period to change the registered classes (for one week immediately after the start

of each quarter): After the classes start, students who are unsatisfied with their registered

classes can cancel them and register for different classes.

During time periods 1 and 2, the staff frequently check whether there are any classes in

which the number of students exceeds the classroom capacity. If the staff discover a capacity

shortage, they must seek a new assignment that satisfies the capacity requirements. In time

period 1, the staff may easily reassign other classrooms to classes because the classes have not

yet started. However, in time period 2, the staff cannot easily do so because classes have already

started. If the staff start reassigning classrooms to classes in time period 1, they must complete

the assignment quickly before starting. If the staff cannot assign the classrooms, they must limit

the number of students in the classes. Consequently, some students may not be able to take the

classes they want.

With the current assignment procedure, reassigning classrooms is not easy. Specifically, when

no vacant classrooms are available for reassignment, the staff must find a candidate classroom

for exchange among classrooms that are already assigned to another class. This procedure often

leads to subsequent exchange until all conditions are satisfied, which is inefficient.

3.2　Model of the Classroom Assignment Problem

This section introduces the formulation of the classroom assignment problem as a 0-1 integer

programming problem, which we first constructed. Then, we introduce the formulation as a

linear programming problem.

Much computational time may be required to assign classrooms to all classes owing to the

large problem size. Therefore, we divide the problem into small problems and solve the problems

step by step. Thereby, we can solve the problems quickly, modify the assignment, and change the

conditions easily. As mentioned in Section 3.1, under the semester system, we can independently

consider classroom assignments for each period per day; however, we must assign the same

classroom to twin classes under the quarter system. Instead, dividing the problem into each

period per day, we divide it into the following seven problems:

Problem 1 : The first and second periods on Mondays and Thursdays

Problem 2 : The third and fourth periods on Mondays and Thursdays

15

Problem 3 : The fifth period on Mondays and Thursdays

Problem 4 : The first and second periods on Tuesdays and Fridays

Problem 5 : The third and fourth periods on Tuesdays and Fridays

Problem 6 : The fifth period on Tuesdays and Fridays

Problem 7 : The first and second periods on Wednesdays

Note that these problems are independent; that is, the solution of a problem does not affect

other problems’ solutions.

If the problem is infeasible, the classroom assignment support system returns an error mes-

sage. To avoid this, we add virtual classrooms with no capacity limit that can be assigned to

any classes. We refer to these virtual classrooms as dummy classrooms.

This problem must satisfy the following hard constraints:

(c.1) One of the classrooms (including dummy classrooms) is assigned to each class.

(c.2) One classroom cannot be assigned to more than one class simultaneously.

(c.3) A classroom with sufficient capacity must be assigned to accommodate all the students

registered for the class.

Additionally, this problem satisfies the following soft constraints as much as possible:

(c.4) A class is assigned to the same classroom as in the previous year as often as possible.

(c.5) Twin classes led by the same professor are assigned to the same classroom or nearby

classrooms as often as possible.

(c.6) A class is assigned to a classroom that satisfies the equipment requirements of the

professor as often as possible.

(c.7) Classes are assigned to dummy classrooms as infrequently as possible.

First, we represent the formulation of the classroom assignment problem as a 0-1 integer pro-

gramming problem using Problem 1 (morning classes on Monday and Thursday) as an example.

We can formulate other problems (Problems 2 to 7) in the same manner.

Notation

Index sets

C1 : the subset of one class of consecutive classes

C2 : the subset of the other class of consecutive classes

Cm : the subset of one class of parallel classes

Ct : the subset of the other class of parallel classes

C3 : the subset of classes other than C1, C2, Cm, and Ct

C : the set of classes, C = C1 ∪ C2 ∪ Cm ∪ Ct ∪ C3

I : the set of groups of the classroom

R : the subset of available classrooms

16

Rd : the set of dummy classrooms

Ri : the subset of classrooms of group i, i ∈ I

Pm : the set of periods on Monday, Pm = {p1m, p2m}

Pt : the set of periods on Thursday, Pt = {p1t , p2t }

P : the set of periods, P = Pm ∪ Pt

Parameters

Ocp =

{
1 : if class c will be offered at period p

0 : otherwise

Arp =

{
1 : if classroom r is available at period p

0 : otherwise

Ecr =

{
1 : if classroom r fulfills the professor’s equipment requirements of class c

0 : otherwise

Bri =

{
1 : if classroom r belongs to the group i

0 : otherwise

Lcrp =

{
1 : if class c was offered at period p in classroom r in the previous year

0 : otherwise

Qcc′ =

{
1 : if class c′ is the other class of consecutive class c

0 : otherwise

Tcc′ =

{
1 : if class c′ is the other class of parallel class c

0 : otherwise

Dii′ =

{
1 : if classroom of group i and classroom of group i′ are reachable

0 : otherwise

Capr : capacity of classroom r

Nc : number of students who registered for class c

Fcrp =

{
1 : if class c is fixed to classroom r at period p

0 : otherwise

α, β, γ, δ, ϵ :

the weights that determine the priority of each term in the objective function,

α ≥ 0, β ≥ 0, γ ≥ 0, δ ≥ 0, ϵ ≥ 0

Variables

xcrp =

{
1 : if class c is assigned at period p to classroom r

0 : otherwise

gci =

{
1 : if class c is assigned to classroom of group i

0 : otherwise

ycrp : penalty for class c at period p to assign to the different classroom r from the previous

year

17

ucc′ : penalty for class c not to assign to the classroom which is assigned the consecutive

class c′

vcc′ : penalty for class c not to assign to the classroom which is assigned the parallel class c′

Formulation

min . α
∑
c∈C

∑
r∈Rd

∑
p∈P

xcrp + β
∑
c∈C

∑
r∈R

∑
p∈P

ycrp + γ
∑
c∈C1

∑
c′∈C2

ucc′ + δ
∑
c∈Cm

∑
c′∈Ct

vcc′

+ϵ
∑
c∈C

∑
r∈R

(Capr −Nc)
∑
p∈P

xcrp (3.1)

s.t.
∑
r∈R

xcrp = Ocp, c ∈ C, p ∈ P (3.2)∑
c∈C

xcrp ≤ 1, r ∈ R, p ∈ P (3.3)∑
c∈C

xcrp ≤ Arp, r ∈ R, p ∈ P (3.4)∑
p∈P

xcrp ≤ Ecr, c ∈ C, r ∈ R (3.5)

∑
c∈C

Ncxcrp ≤ Capr, r ∈ R, p ∈ P (3.6)

xcrp ≥ Fcrp, c ∈ C, r ∈ R, p ∈ P (3.7)

−ycrp ≤ (Lcrp − xcrp) ≤ ycrp, s ∈ S, r ∈ R, p ∈ P (3.8)

−ucc′ ≤ Qcc′
(
xcrp − xc′rp′

)
≤ ucc′ ,

c ∈ C1, c′ ∈ C2, r ∈ R, p ∈ Pm, p′ ∈ Pt (3.9)

−vcc′ ≤ Tcc′
(
xcrp − xc′,r,p+1

)
≤ vcc′ ,

c ∈ Cm, c′ ∈ Ct, r ∈ R, p ∈ {p1m, p1t } (3.10)

Bri

∑
p∈P

xcrp ≤ gci, c ∈ C, r ∈ R, i ∈ I

Dii′ (gci + gc′i′)Qcc′ ≤ 1, c ∈ C1, c′ ∈ C2, i ∈ I, i′ ∈ I (3.11)

xcrp ∈ {0, 1}, c ∈ C, r ∈ R, p ∈ P (3.12)

ycrp ∈ {0, 1}, c ∈ C, r ∈ R ∪Rd, p ∈ P (3.13)

ucc′ ∈ {0, 1}, c ∈ C1, c′ ∈ C2 (3.14)

vcc′ ∈ {0, 1}, c ∈ Cm, c′ ∈ Ct (3.15)

gci ∈ {0, 1}, c ∈ C, i ∈ I (3.16)

In the formulation above, we minimize the objective function (3.1) which is the sum of the

number of classes assigned to dummy classrooms, the three penalties, and the difference between

the number of students and the classroom capacity. The first penalty is the sum of ycrp, defined

in (3.8) as the penalty for assigning class c to the same classroom r as in the previous year. The

second penalty is the sum of uc1,c2 , defined in (3.9) as the penalty for assigning classes c1 and c2

which are the consecutive classes to the same classroom. The third penalty is the sum of vc1,c2 ,

defined in (3.11) as the penalty for assigning classes c1 and c2, which are the parallel classes to

the same classroom. Constraint (3.2) means that class c should be assigned to single classroom

18

r at each period p. Constraint (3.3) means that at most single class c should be assigned to

classroom r at each period p. Constraint (3.4) means that class c should be assigned to only

available classroom r. Constraint (3.5) indicates that class c should be assigned to classroom r,

which satisfies the equipment requirements of the professor. Constraint (3.6) means that class c

should be assigned to classroom r where the number of students does not exceed the classroom

capacity. Constraint (3.7) means that class c should be assigned to classroom r fixed at period

p. Constraint (3.8) means that class c should be assigned to the same classroom r as in the

previous year as often as possible. Constraint (3.9) means that classes c1 and c2, which are

the consecutive classes should be assigned to the same classrooms r. Constraint (3.10) means

that classes c1 and c2, which are parallel classes, should be assigned to the same classrooms r.

Constraint (3.11) means that classes c1 and c2, which are consecutive classes, should be assigned

to classrooms of groups i1 and i2, which are reachable. Constraints (3.12) − (3.16) are binary

constraints.

Next, we represent the formulation of the classroom assignment problem as a linear program-

ming problem. We describe our technique on formulating the classroom assignment problem as

a minimum cost flow problem using Problem 1 (morning classes on Monday and Thursday) as an

example (Figure 3.2). We can formulate other problems (Problems 2 – 7) in the same manner.

Figure 3.2: Example of Problem 1 network

As illustrated in Figure 3.2, the network has three layers, each corresponding to different

types of nodes: class nodes, twin classroom nodes, and single classroom nodes. Each class

node in the leftmost layer corresponds to a class, whereas each single classroom node in the

rightmost layer corresponds to a classroom. These two types of nodes are essential components

for classroom assignments. Additionally, we introduce twin classroom nodes as artificial nodes in

the middle layer. Introducing the twin classroom nodes and setting adequate edge costs allows

us to flexibly incorporate various soft constraints.

The class nodes in the leftmost layer consist of three sets of nodes, namely, C1, C2, and C3,

19

which correspond to consecutive, parallel, and single classes, respectively. C1 and C2 are nodes

to which we must assign the same classroom or nearby classrooms. In this way, if we need to

assign nearby classrooms to two classes, we set the classes as a node and introduce a set of

nodes. By setting adequate costs for edges between the node and twin classroom nodes, we can

assign nearby classrooms to classes. For example, this is applied to consecutive classes, which

are offered by the same professor in consecutive periods. This is also applied to parallel classes

to avoid student confusion.

The single classroom nodes in the rightmost layer consist of two types of sets: R3 and Rd
3.

A “single classroom” is an available classroom in a period on a day of the week. For example, if

classroom S21 is available in the first period on Mondays, we prepare a node (S21, Mon1) as a

node in R3. We also prepare dummy classroom nodes as nodes in Rd
3. Ra consists of all nodes

in R3 and Rd
3.

Meanwhile, a classroom that is available twice a week is called a “twin classroom.” We

further classify twin classrooms into “consecutive classrooms” and “parallel classrooms,” which

can be used by consecutive classes and parallel classes, respectively.

• Consecutive classrooms are available in the following periods:

- First and second periods on any day from Monday to Friday

- Third and fourth periods on any day from Monday to Friday except Wednesday

• Parallel classrooms are available in the following periods:

- Same period on Mondays and Thursdays

- Same period on Tuesdays and Fridays

For the twin classroom nodes in the middle layer, four sets of nodes exist, namely, R1, R2,

Rd
1, and Rd

2, which correspond to consecutive classrooms, parallel classrooms, dummy classrooms

for consecutive classrooms, and dummy classrooms for parallel classes, respectively. If classroom

S21 is available in the first and second periods on Thursdays, we prepare a node (S21, (Thu1

and Thu2)) as a node in R1. Similarly, if classroom S21 is available in the first period both on

Mondays and Thursdays, we prepare a node (S21, (Mon1 and Thu1)) as a node in R2. We also

prepare dummy classroom nodes as nodes in Rd
1 and Rd

2. Rg denotes all nodes in R1, R2, R
d
1,

and Rd
2.

In addition to the aforementioned nodes, two special nodes exist: a source node s and sink

node t. We connect s and all nodes in C1 and C2 with a capacity of 2, and all nodes in C3

with a capacity of 1. We must assign the nodes in C1 and C2 to the same classroom as often

as possible owing to constraint (c.5). To achieve this, we must ensure that each class node in

C1 is connected to twin classroom nodes in R1, and each class node in C2 is connected to twin

classroom nodes in R2. For example, if the class node “Basic Programming” is scheduled in the

first and second periods on Thursdays, we connect the node to all nodes (*, (Thu1 and Thu2))

in R1, where the wildcard * represents all classrooms that have sufficient capacity for the class.

Each twin classroom node in R1 and R2 has two edges corresponding to two single classroom

nodes in R3. For example, node (S21, (Thu1 and Thu2)) in R1 connects to two nodes (S21,

Thu1) and (S21, Thu2) in R3.

We also connect each class node in C3 and single classroom nodes in R3. For example, if the

class node “Seminar in Systems and Mathematical Science” is scheduled in the second period

20

on Thursdays, we connect the node to all nodes (*, (Thu2)) in R3 that satisfy the capacity

requirements. Then, all single classroom nodes in R3 are connected to t with a capacity of 1.

The flow conservation law holds at all nodes, except for s and t, and flow the total number of

classes from s to t. To avoid the unsolvable problem, we must ensure that each class node and

the twin classroom nodes are connected to dummy classroom nodes, and all dummy classroom

nodes are connected to t. A feasible s − t flow corresponds to a feasible classroom assignment

that satisfies all hard constraints (c.1), (c.2), and (c.3).

As mentioned earlier, we must set adequate costs for edges between class nodes and twin

classroom nodes to achieve a desirable assignment. Note that flow from a class node to a

twin classroom node indicates that a classroom corresponding to the twin classroom node is

assigned to the class. Therefore, we set a low (high) cost for edges associated with a desirable

(undesirable) assignment. For example, at Nanzan University, we set the lowest cost for edges

leading to a node associated with the same classroom as in the previous year because it is the

best assignment. In addition, we may set a slightly higher but sufficiently low cost for edges

associated with a classroom located close to the same classroom as in the previous year. In

contrast, we set a high cost for edges corresponding to an assignment to a classroom that does

not fulfill the professor’s requirements regarding equipment. Also, we set the highest cost to

edges leading to a dummy classroom node to reduce the number of dummy classrooms that are

assigned to classes. The flow from a class node to a twin classroom node may be split in two.

Even in that case, we set adequate costs for edges to assign the classes to nearby classrooms as

possible.

We define the cost associated with edges as follows. For the following edges, we reduce the

cost of the edges to make it easier to assign a classroom to a class:

• edges to the same classroom as in the previous year

• edges to classrooms located sufficiently close to the previous year’s classroom

Additionally, for the following edges, we increase the cost of the edges in an effort to avoid

assigning the classroom to a class:

• edges to classrooms that do not fulfill the professor’s equipment requirements

• edges to dummy classrooms

Note that we set different values for the costs of all these edges. Therefore, the flow on all

edges with integer capacity is integer values.

In the following, we present the formulation of the classroom assignment problem.

Notation

Index sets

s : the source node

t : the sink node

C1 : the set of nodes of consecutive classes

C2 : the set of nodes of parallel classes

C3 : the set of nodes of single classes

21

R1 : the set of nodes of consecutive classrooms

R2 : the set of nodes of parallel classes

R3 : the set of nodes of single classrooms

Rd
1, R

d
2, R

d
3 : the set of nodes of dummy classrooms

Rg : the set of nodes of consecutive classrooms, parallel classes, and dummy classrooms,

R1 ∪R2 ∪Rd
1 ∪Rd

2 = Rg

Ra: the set of single classrooms and dummy classrooms, R3 ∪Rd
3 = Ra

Parameters

acr : the capacity of edge (c, r), c ∈ C1, r ∈ R1

bcr : the capacity of edge (c, r), c ∈ C2, r ∈ R2

mcr : the capacity of edge (c, r), c ∈ C3, r ∈ R3

nrr′ : the capacity of edge (r, r′), r ∈ R1 ∪R2, r′ ∈ R3

ort : the capacity of edge (r, t), r ∈ Ra, t ∈ T

w1
cr : the cost of edge (c, r), c ∈ C1, r ∈ R1 ∪Rd

1

w2
cr : the cost of edge (c, r), c ∈ C2, r ∈ R2 ∪Rd

2

w3
cr : the cost of edge (c, r), c ∈ C3, r ∈ Ra

vsc : the flow of edge (s, c), c ∈ C1 ∪ C2 ∪ C3

2 for all c ∈ C1 ∪ C2, 1 for all c ∈ C3

Variables

xcr : the flow of edge (c, r), c ∈ C1, r ∈ R1 ∪Rd
1

ycr : the flow of edge (c, r), c ∈ C2, r ∈ R2 ∪Rd
2

zcr : the flow of edge (c, r), c ∈ C3, r ∈ Ra

urr′ : the flow of edge (r, r′), r ∈ Rg, r′ ∈ Ra

qrt : the flow of edge (r, t), r ∈ Ra, t ∈ T

Formulation

min .
∑

(c,r), c∈C1, r∈R1∪Rd
1

w1
crxcr +

∑
(c,r), c∈C2, r∈R2∪Rd

2

w2
crycr

+
∑

(c,r), c∈C3, r∈Ra

w3
crzcr (3.17)

s.t. xcr ≤ acr, c ∈ C1, r ∈ R1 (3.18)

ycr ≤ bcr, c ∈ C2, r ∈ R2 (3.19)

zcr ≤ mcr, c ∈ C3, r ∈ R3 (3.20)

urr′ ≤ nrr′ , r ∈ R1 ∪R2, r′ ∈ R3 (3.21)

qrt ≤ ort, r ∈ Ra, t ∈ T (3.22)

22

vsc =
∑

r∈R1∪Rd
1

xcr, c ∈ C1 (3.23)

vsc =
∑

r∈R2∪Rd
2

ycr, c ∈ C2 (3.24)

vsc =
∑
r∈Ra

zcr, c ∈ C3 (3.25)

∑
(c, r), c∈C1

xcr =
∑

(r, r′), r′∈Ra

urr′ , r ∈ R1 ∪Rd
1 (3.26)

∑
(c, r), c∈C2

ycr =
∑

(r, r′), r′∈Ra

urr′ , r ∈ R2 ∪Rd
2 (3.27)

∑
(c, r′), c∈C3

zcr′ +
∑

(r, r′), r∈Rg

urr′ =
∑

(r′, t), t∈T

qr′t, r′ ∈ Ra (3.28)

xcr ≥ 0, c ∈ C1, r ∈ R1 ∪Rd
1 (3.29)

ycr ≥ 0, c ∈ C2, r ∈ R2 ∪Rd
2 (3.30)

zcr ≥ 0, c ∈ C3, r ∈ Ra (3.31)

urr′ ≥ 0, r ∈ Rg, r′ ∈ Ra (3.32)

qrt ≥ 0, r ∈ Ra, t ∈ T (3.33)

In the formulation above, we minimize the objective function (3.17) which is the sum of

the cost of the flows, whereas constraints (3.18) − (3.22) are the flow capacity constraints for

edges. In constraints (3.18)− (3.22), if the number of registered students exceeds the classroom

capacity, we set the capacity of the edge to 0. Constraints (3.23)− (3.28) are flow conservation

laws, whereas constraints (3.29)− (3.33) are non-negativity constraints.

3.3　Computational Experiments

This section presents the results of computational experiments using the model introduced

in Section 3.4.

First, as a trial calculation, we assigned classrooms to classes based on the Nanzan University

timetable data from the 2019 academic year. The parameter values and calculation results in

the cases examined are presented in Table 3.1.

We initially implemented a system that assigned the same classroom or nearby classrooms

to twin classes as often as possible. However, in addition to twin classes, we determined that

we also had to assign the same classroom or nearby classrooms to all classes led by the same

professor in consecutive periods. This is based on the opinions of the staff responsible for the

assignment of classrooms in 2019. Therefore, we improved the system to consider not only

twin classes, but also all consecutive classes, and we received feedback from the staff that the

assignments were consistent with their intentions.

During the COVID-19 pandemic, the administration of Nanzan University has faced an

exceptional situation. In 2020, because all classes were conducted on-line, the staff did not need

to assign classrooms. However, Nanzan University offers three types of classes in 2021: on-line

classes, hybrid classes that use both on-line and face-to-face settings, and face-to-face classes.

For the hybrid classes, the staff have to change the classroom capacity to one-half or one-third

23

Table 3.1:
Size and central processing unit (CPU) time of the classroom assignment problems
in the cases of 2019

Terms : Q1 Problems

1 2 3 4 5 6 7

|C1| 139 137 0 132 111 0 98
|C2| 103 100 14 80 79 7 0
|C3| 58 130 27 103 160 23 64

#variables 866, 246 924, 971 743, 607 891, 581 930, 440 737, 266 810, 404
#constraints 867, 936 926, 661 744, 874 893, 271 932, 130 738, 533 811, 671

Times (sec) 441 518 192 404 503 193 342
Set-up times 332 508 191 402 501 192 341
CPU times 9 10 1 3 2 1 1

Total times (problems 1–7) 2, 239

Terms : Q2 Problems

1 2 3 4 5 6 7

|C1| 127 83 0 112 110 0 68
|C2| 73 87 10 77 76 4 0
|C3| 43 125 30 67 107 25 46

#variables 835, 805 892, 405 744, 450 851, 432 883, 963 737, 687 782, 504
#constraints 837, 495 894, 095 745, 717 853, 122 885, 653 738, 954 783, 771

Times (sec) 270 372 161 299 367 165 200
Set-up times 268 366 160 293 365 164 199
CPU times 2 6 1 6 2 1 1

Total times (problems 1–7) 1, 587

Terms : Q3 Problems

1 2 3 4 5 6 7

|C1| 136 128 0 126 108 0 92
|C2| 94 93 11 88 72 6 0
|C3| 51 130 34 85 153 28 54

#variables 855, 255 918, 203 748, 253 877, 217 920, 295 741, 068 799, 416
#constraints 856, 945 919, 893 749, 520 878, 907 921, 985 742, 335 800, 683

Times (sec) 290 424 227 333 433 160 248
Set-up times 287 421 226 330 427 159 247
CPU times 3 3 1 3 6 1 1

Total times (problems 1–7) 2, 006

Terms : Q4 Problems

1 2 3 4 5 6 7

|C1| 127 102 0 126 118 0 73
|C2| 86 96 16 74 67 8 0
|C3| 53 124 25 94 143 33 57

#variables 849, 754 903, 404 742, 763 878, 900 913, 960 746, 139 793, 914
#constraints 851, 444 905, 094 744, 030 880, 590 915, 650 747, 406 795, 181

Times (sec) 287 405 188 343 435 164 316
Set-up times 285 403 187 341 428 163 315
CPU times 2 2 1 2 7 1 1

Total times (problems 1–7) 1, 829

|R1| 422
|R2| 422
|R3| 844
|Rd

1| 1
|Rd

2| 1
|Rd

3| 1

and assign classrooms under more complex conditions than before. At the request of the staff,

we have improved the system so that they can change the classroom capacity.

We assigned classrooms to classes based on the data from Q1 of 2021. Table 3.2 presents the

24

calculation results in the cases examined. If a class is pre-determined to be on-line or to use a

particular classroom (e.g., a PC room), the class is excluded from the set of classes.

Table 3.2:
Size and central processing unit (CPU) time of the classroom assignment problems
in the cases of 2021

Terms : Q1 Problems

1 2 3 4 5 6 7

|C1| 129 95 0 114 90 0 71
|C2| 46 82 8 50 65 6 0
|C3| 62 143 20 115 187 20 57

(c.4) 50 95 4 59 99 7 43
(c.5) 38 58 0 36 65 0 16
(c.6) 0 0 0 0 0 0 0
(c.7) 10 16 0 16 0 0 6

#variables 727, 589 791, 632 629, 490 764, 681 817, 394 628, 708 683, 020
#constraints 729, 151 793, 194 630, 661 766, 243 818, 956 629, 879 684, 191

Times (sec) 257 389 132 325 509 147 197
Set-up times 256 388 131 324 508 146 196
CPU times 1 1 1 1 1 1 1

Total times (problems 1–7) 1, 766

As indicated in Tables 3.1 and 3.2, we found optimal solutions for each network flow problem

quickly. In Table 3.2, (c.4) is the number of classes assigned to the same classroom as in

the previous year. Meanwhile, (c.5) is the number of twin classes not assigned to the same

classroom. (c.6) represents the number of classes assigned to classrooms that do not satisfy the

equipment requirements of professors, and (c.7) represents the number of classes assigned to

dummy classrooms.

We could assign classrooms to most classes, and only a few classes were assigned to dummy

classrooms. In addition, we were able to assign classrooms to all classes that satisfy the pro-

fessors’ equipment requirements. Meanwhile, in Q1 of 2021, the hybrid classes used less than

half the classroom capacity of the previous year. Therefore, soft constraint (c.4) was not satis-

fied. As shown in Table 3.2, many classes are assigned to different classrooms from the previous

year. Furthermore, as representative professors often change, their equipment requirements may

change; hence, the classroom in the previous year may not satisfy their requirements. In an ex-

ceptional situation like in 2021, we need to set the cost of edges so that the impact of soft

constraint (c.4) is small because we may not be able to satisfy soft constraints (c.5) and (c.6)

owing to soft constraint (c.4). However, at Nanzan University, professors basically request the

same classroom as in the previous year. Therefore, soft constraint (c.4) is necessary for the

ordinary academic year.

We used MIPCL version 2.5.4 (win64) as our solver with the model implemented in Python

3.7.4. The assignment was performed on a computer running Microsoft Windows 10, with an

Intel R⃝ CoreTM i7-8550U CPU and 16GB of RAM.

3.4　 Implementation of the Classroom Assignment Support System

This section introduces a classroom assignment support system that we redeveloped using

the model introduced in Section 3.2. We implemented the interactive classroom assignment

25

support system using Microsoft Access VBA (Figure 3.3). The staff can operate the system by

clicking the buttons on the screen.

Figure 3.3: The user interface of the classroom assignment support system

Clicking the “Extract Data” button connects to the on-campus database, and data regarding

the timetable, classrooms, and professors are acquired from approximately 20 data tables in the

database presented in Figure 3.4.

Figure 3.4: Example of part of the database

Each field in the table is described as follows:

• lecture cd: class code

26

• kaiko keitai id: ID of the term (e.g., “51” and “61” correspond to Q1 and Q2, respec-

tively)

• day of week id: ID of the day of the week (e.g., “11” and “12” correspond to Monday

and Tuesday, respectively)

• period id: ID of the period (e.g., “13” and “14” correspond to the third and fourth

periods, respectively)

• room cd: assigned classroom’s name

• employee cd: professor’s code

Next, by clicking the “Set Room” button, we can set whether each classroom can be made

available. Then, by clicking the “Start” button, the system assigns classrooms to classes. When

clicking the “Start” button, we can also select a few problems from Problems 1 to 7. The upper

“Start” button is for the time period to register for classes, whereas the lower “Start” button is

for the time period to change registered classes. In the case of the lower “Start” button (in time

period 2), constraint (c.4) is as follows, whereas the others are the same as in time period 1:

(c.4)’ A class is assigned to the same classroom as in “time period 1” as often as possible.

If classes are assigned to dummy classrooms, the staff revise the conditions, reassign the

classroom, or may manually assign vacant classrooms to the classes.

We designed the system so that staff can perform the assignment by changing parameters,

such as the offered classes and professor requirements. In addition, they can fix a part of the

obtained assignment and reassign classrooms with the revised conditions.

27

Chapter 4

Optimal Relocation Plan for Improving Management of

Bookshelves

This chapter explains the book relocation in NUL, where the shortage of bookshelves is the

most serious problem.

4.1　Background of the Book Relocation Problem

University libraries have improved the quality of the stored resources and continued to in-

crease their number. Moreover, the university education and research have developed based on

them [15]. Recently, the mixture of different types of information resources has been promoted

at university libraries: traditional resources (paper), digital resources, and stored resources in

other institutions including foreign countries [29].

Several university libraries in Japan have also used information systems, and they have been

improving the management and operation of books and services to library users by using the

systems. However, because many university libraries continue to accept and accumulate books

by buying or being donated, they face the shortage of bookshelves [15, 16]. Therefore, the

libraries secure vacant sections of bookshelves by moving a part of the books to off-campus

storage, adding new bookshelves, or disposing the books.

In the libraries, the books are classified, and the bookshelves are divided into the sections

of each book classification number to place books on the bookshelves quickly. As shown in

Figure 4.1, each classified book is located from the left end of the shelf. Moreover, the right-

hand side of the shelf is kept vacant for the margin of the future accepted books. In the daily

Figure 4.1: An example of actual vacant shelves

28

operational level, the libraries relocate the books frequently to keep the bookshelf margin of

each classification appropriately.

In NUL, we place about 700,000 books in the order of classification numbers on the book-

shelves. As explained above, the space of one section consists of the shelves for the existing

books and the vacant shelves for the future accepted books of the classification number. We

must place newly accepted books on the vacant shelves in their classification number sections.

These vacant shelves are determined by library staff based on the number of books of each clas-

sification number accepted in the past years. However, because the forecast of the number of

the future accepted books is not accurate, the staff need to adjust the vacant shelves frequently.

If we cannot place new books on the bookshelves, the vacant shelves of the classification number

must be increased by relocating the books and reducing the number of vacant shelves for other

classification numbers. However, libraries must maintain accessibility to books for the library

users without any problem. In the literature, researchers have analyzed the seriousness of book

misplacement and developed a model considering the trade-off in which the library users want to

minimize their effort in finding books and the library staff want to minimize its cost of keeping

the shelves in order relative to a specified service level [4]. Their study also shows that if books

are in perfect order of classification numbers, the library users will usually access books without

difficulty. Therefore, to keep access of books for the library users, we have to relocate the books

while maintaining the placement order of books based on the classification number.

In NUL, the library staff plan the relocation of the books every year. So far, they are

making the plan of the adjustment by hand considering the conditions as explained above, and

they spend much time every time. Based on the plan, they move the books during the summer

vacation, when there are relatively few library users. Sometimes, the plan includes the move of

many books because each year’s plan is not so commendable, and the imbalance is accumulating.

In this case, more library staff move the books, which is time-consuming and takes much hard

work.

NUL has rearranged the bookshelves and removed the books in recent years; they moved

about 270,000 books to the off-campus storage in 2017. Consequently, the occupancy of book-

shelves in the library improved from 78% (March 2015) to 62% (March 2020). However, if we

continue to accept the books every year, the occupancy of bookshelves will exceed 70% in a few

years on the second and fourth floors, which are dedicated for the students in the library. The

occupancy of bookshelves on all floors is expected to reach 75% by 2036. If the occupancy of

bookshelves exceeds 70%, accepting new books is generally difficult [13].

For the rearrangement, the staff need to consider the following two factors:

(i) Keep enough bookshelf margin for each classified book group

Due to the limited capacity of bookshelves and the imbalance of the number of books bought

in the future between the classified book groups, the staff need to move the classified book group

that is increasing rapidly to the shelves with more vacant shelves.

(ii) The distance of the move of the classified book groups

The staff need to move the books by hand, which is an enormous burden for the library

management. They make a plan of the relocation to minimize the distance of the move; however,

it takes time and effort.

29

Although the book relocation is a problem that should be solved in many libraries, research

suggesting the optimal solution method is scarce. Hitotsubashi University Library uses the

Toshokan Hikkoshi Rakuraku Kit they developed [14] for book relocation. The application

is reported to be useful; however, this application does not use OR to make the plan of the

relocation. It only provides an assignment using a manually created plan by the staff. It still

takes time to make the plan and the move distance is not minimal.

Thus, we developed a model to relocate the books more efficiently. Our goals are to make

the plan automatically using the techniques and decrease the move of the books to reduce the

burden of the library staff.

4.2　Model of the Book Relocation Problem

This section introduces the formulation of the book relocation problem as a mixed-integer

programming problem.

NUL categorizes books into N book groups, denoted by G, and gives a classification number

to each group. The bookshelves in NUL are divided into sections, each of which consists of one

or more consecutive shelves. Each section is assigned to one of the book groups to appear in

the bookshelves according to their classification numbers. Due to this manner, G is regarded as

an ordered set G = {1, 2, . . . , N}, which corresponds to the classification numbers.

At present, each section has not been filled with books yet; some vacant shelves are remaining

for books to be arranged in the section in the future. We suppose that the books in a book

group i ∈ G already occupy a space of width Bi in its section. Moreover, statistics by NUL,

revealed that book group i consumes more bi width every year (Figure 4.2). Hence, book group

i will need a space of width Bi + nbi in n years.

Figure 4.2: An example of a space of width occupied by books in a book group

If the vacant shelves in a section are not enough, we have to widen the section (i.e., add one

or more shelves to the section), which may require relocation of many books to keep the order

of G. Rearranging books is exhausting; therefore, we need a good plan for dividing bookshelves

into sections with adequate shelves for each book group.

In addition, we need to consider that NUL has several types of bookshelves. In this paper, we

deal with the case of two groups of bookshelves: bookshelf groups 1 and 2. They are denoted by

S = {1, 2}. For each j ∈ S, bookshelf group j consists of K(j) bookshelves, which are numbered

from 1 to K(j), and each of which is an L(j)-level bookshelf. The shelves of a bookshelf in

bookshelf group j ∈ S are also numbered from the highest one, and hence the L(j)th shelf means

the lowest shelf of the bookshelf. Regardless of the bookshelf groups, all the shelves have the

same width, normalized to be 1 (Figure 4.3). Hence, parameters Bi and bi for i ∈ G are also

30

converted.

Figure 4.3: An example of bookshelf groups

At present, bookshelf groups S are consistent with book groups G in the following sense:

The first N ′ book groups G(1) = {1, 2, . . . , N ′} have their sections in bookshelf group 1, and the

last N−N ′ book groups G(2) = {N ′+1, N ′+2, . . . , N} in bookshelf group 2. Such a consistency

must hold after relocation; that is, N ′′ exists, such that book groups i with i ≤ N ′′ and with

i > N ′′ are assigned to a section in bookshelf groups 1 and 2, respectively.

Because of these settings, the positions of the sections are represented as follows: For each

bookshelf group j and each book group i in G(j), we use a pair of integers (k, l) to show that the

section for book group i starts with the lth shelf of the kth bookshelf in bookshelf group j. The

current position of the section for each book group i ∈ G is assumed to be (k0i , l
0
i). Note that, for

a book group i ∈ G(j), we have k0i ∈ {1, 2, . . . ,K(j)} and l0i ∈ {1, 2, . . . , L(j)}. Moreover, if book

groups i and i+1 both have their sections in the same bookshelf group j, the total width of the

section for i can be calculated by (k0i+1L
(j) + l0i+1)− (k0iL

(j) + l0i) = (k0i+1 − k0i)L
(j) + l0i+1 − l0i .

Our problem is basically determining new positions of sections. It is allowed that, after the

relocation, some book groups in G(1) are assigned to sections in bookshelves in bookshelf group

2, and vice versa. Then, we prepare pairs of integer variables (k
(1)
i , l

(1)
i) and (k

(2)
i , l

(2)
i) with

k
(j)
i ∈ {1, 2, . . . ,K(j) + 1}, i ∈ G ∪ {N + 1}, j ∈ S,

l
(j)
i ∈ {1, 2, . . . , L(j)}, i ∈ G ∪ {N + 1}, j ∈ S,

for each book group i ∈ G = G(1) ∪G(2) and i = N +1, and we define variables w
(1)
i and w

(2)
i as

w
(1)
i = (k

(1)
i+1 − k

(1)
i)L(1) + l

(1)
i+1 − l

(1)
i

and

w
(2)
i = (k

(2)
i+1 − k

(2)
i)L(j) + l

(2)
i+1 − l

(2)
i .

In addition, we use the following binary variables:

x
(j)
i =

1 if book group i has its new section in bookshelf group j

0 otherwise
i ∈ G, j ∈ S

31

together with constraints:

w
(j)
i ≤ K(j)L(j)x

(j)
i , i ∈ G, j ∈ S,

x
(1)
i + x

(2)
i = 1, i ∈ G.

Then, the width of the new section for book group i is given by either w
(1)
i or w

(2)
i . Note that

w
(1)
i = 0 require that k

(1)
i+1 = k

(1)
i and l

(1)
i+1 = l

(1)
i . Hence, by setting k

(1)
N+1 = K(1) + 1 and

l
(1)
N+1 = 1, we have (c1) k

(1)
i = K(1) + 1 and l

(1)
i = 1 if x

(1)
i = 0; that is, i is not assigned to a

section in bookshelf group 1. Similarly, by introducing the following technical constraints:

k
(2)
i ≤ 1 + (K(2) − 1)x

(2)
i , i ∈ G,

l
(2)
i ≤ 1 + (L(2) − 1)x

(2)
i , i ∈ G,

we have, as a consequence of x
(2)
i = 0, (c2) k

(2)
i = 1 and l

(2)
i = 1 and moreover, k

(2)
i+1 = 1 and

l
(2)
i+1 = 1 if i is not assigned to a section in bookshelf group 2.

We now discuss the objective function of our model. Our main aim is to divide bookshelves

into sections so that new books still have a margin in each section in n years, which will avoid

a drastic relocation. At the same time, we want to minimize the difference between the current

positions of the sections and their new positions because a small rearrangement is also tiring.

For simplicity, we relate the tiredness to the sum of distances to carry books from the current

positions to the newly assigned position. The rearrangement task is assumed to be composed

of the following three steps: (1) take books down on the floor, (2) carry the books to their new

bookshelf (if needed), and then (3) put the books on their new shelf; see Figure 4.4.

Figure 4.4: The distance to carry books from the current positions to the newly assigned position

To measure the distances in this task, we introduce integer variables ti, t
′
i and t′′i for each

book group i ∈ G, although we omit to explain their constraints here. The variable ti denotes

the distance between the current bookshelf and the new one, which might be 0. Meanwhile, the

variable t′i is basically equal to the difference between the current shelf and the new one, which

is not directly included in the objective function; however, it is used to control the following

binary variable:

yi =

1 if book group i changes the position of its section

0 otherwise
i ∈ G

32

By using this variable yi, the height to put books down on the floor is given by yi(L
(1) − l0i) for

i ∈ G(1) and yi(L
(2) − l0i) for i ∈ G(2). The variable t′′i denotes the height of the shelf for the

books.

Finally, we incorporate the number of books to carry, which is preferred to be small, into the

objective function by employing a multiplying factor f(Bi) for each book group i ∈ G. Then,

our problem is formulated as follows:

Notation

Index sets

N : the number of categorized book groups

G : the set of book groups, G = {1, 2, ..., N}

S : the set of bookshelf groups, S = {1, 2}

Parameters

Bi : the space of width currently occupied by book group i

f(Bi) : the number of books in book group i to carry

bi : the space of width consumed by book group i a year

n : the number of years

K(j) : the number of bookshelves of bookshelf group j

L(j) : the number of levels of bookshelf group j

k0i : the current bookshelf position to start placement for book group i

in bookshelf group j

l0i : the current shelf position to start placement for book group i in bookshelf group j

Variables

x
(j)
i =

{
1 : if book group i has its new section in bookshelf group j

0 : otherwise

yi =

{
1 : if book group i changes the position of its section

0 : otherwise

k
(j)
i : the bookshelf position to start newly placement for book group i

in bookshelf group j

l
(j)
i : the shelf position to start newly placement for book group i in bookshelf group j

w
(j)
i : the space of width of the new section for book group i in bookshelf group j

ti : the distance between the current bookshelf and the new bookshelf

t′i : the difference between the current shelf and the new shelf

t′′i : the height of the shelf to put books on

33

Formulation

min .
∑

i∈G(1)

f(Bi){ti + yi(L
(1) − l0i) + t′′i)}

+
∑

i∈G(2)

f(Bi){ti + yi(L
(2) − l0i) + t′′i)} (4.1)

s.t. w
(j)
i = (k

(j)
i+1 − k

(j)
i)L(j) + l

(j)
i+1 − l

(j)
i , i ∈ G, j ∈ S (4.2)

w
(j)
i ≤ K(j)L(j)x

(j)
i , i ∈ G, j ∈ S (4.3)

Bi + nbi ≤ w
(1)
i + w

(2)
i , i ∈ G (4.4)∑

i∈G
(Bi + nbi) ≤ K(1)L(1) +K(2)L(2) (4.5)

k
(j)
i ≤ k

(j)
i+1, i ∈ G, j ∈ S (4.6)

L(1)(k
(1)
i − k

(1)
i+1) + x

(1)
i+1 ≤ l

(1)
i+1 − l

(1)
i , i ∈ G (4.7)

L(2)(k
(2)
i − k

(2)
i+1) + x

(2)
i ≤ l

(2)
i+1 − l

(2)
i , i ∈ G (4.8)

x
(1)
i + x

(2)
i = 1, i ∈ G (4.9)

x
(1)
i ≥ x

(1)
i+1, i ∈ G (4.10)

x
(2)
i ≤ x

(2)
i+1, i ∈ G (4.11)

k0i − k
(1)
i ≤ ti, i ∈ G(1) (4.12)

k
(2)
i − x

(1)
i + k

(1)
i − k0i ≤ ti, i ∈ G(1) (4.13)

k0i − k
(2)
i +K(1) + 1− k

(1)
i ≤ ti, i ∈ G(2) (4.14)

k
(2)
i − k0i ≤ ti, i ∈ G(2) (4.15)

l0i − l
(j)
i ≤ t′i, i ∈ G(j), j ∈ S (4.16)

l
(j)
i − l0i ≤ t′i, i ∈ G(j), j ∈ S (4.17)

ti

2(K(1) +K(2))
+

t′i
2L(j)

≤ yi, i ∈ G(j), j ∈ S (4.18)

yi ≤ ti + t′i, i ∈ G (4.19)

L(j)x
(j)
i − l

(j)
i ≤ t′′i + L(j)(1− yi), i ∈ G(j), j ∈ S (4.20)

k
(2)
i ≤ 1 + (K(2) − 1)x

(2)
i , i ∈ G (4.21)

l
(2)
i ≤ 1 + (L(2) − 1)x

(2)
i , i ∈ G (4.22)

k
(j)
i ∈ {1, 2, . . . ,K(j) + 1}, i ∈ G, j ∈ S (4.23)

k
(j)
N+1 = K(j) + 1, j ∈ S (4.24)

l
(j)
i ∈ {1, 2, . . . , L(j)}, i ∈ G, j ∈ S (4.25)

l
(j)
N+1 = 1, j ∈ S (4.26)

x
(j)
i ∈ {0, 1}, i ∈ G, j ∈ S (4.27)

yi ∈ {0, 1}, i ∈ G (4.28)

w
(j)
i ∈ Z+, i ∈ G, j ∈ S (4.29)

ti, t′i, t′′i ∈ Z+, i ∈ G (4.30)

34

The definitions of the constraints, which have not been provided yet, are as follows. Con-

straint (4.4): Book group i still have enough space in its section in n years. Constraint (4.5):

All book groups must be arranged on the bookshelves in bookshelf groups 1 and 2 in n years.

Constraint (4.6): The bookshelf for book group i has to be the same as or anterior to that for

book group i + 1. Constraints (4.7) and (4.8) (together with constraint (4.6)): If book groups

i and i + 1 are assigned to the same bookshelf, then their sections have to start with distinct

shelves. Constraints (4.10) (resp., (4.11)): If a book group i+1 (resp., i) is assigned to a section

in bookshelf group 1 (resp., 2), then book group i (resp., i + 1) is also assigned to a section

in bookshelf group 1 (resp., 2). Constraints (4.12) and (4.13): For a book group i ∈ G(1), the

distance between its current bookshelf and its new bookshelf is equal to ti with the minimum

value satisfying these two constraints. Note that, by (c2) condition, k
(2)
i = x

(1)
i = 1 if book

group i is assigned to a section in the bookshelf group 1; otherwise k
(2)
i − x

(1)
i = k

(2)
i and, by

(c1) condition, k
(1)
i = K(1) + 1. Constraints (4.14) and (4.15): For a book group i ∈ G(2), the

distance between its current bookshelf and its new bookshelf is equal to ti with the minimum

value satisfying these two constraints. Note that, by (c1) condition, k
(1)
i = K(1) + 1 if book

group i is assigned to a section in the bookshelf group 2. Constraints (4.16) and (4.17): If book

group i changes its shelf, t′i has to be positive. Constraint (4.18) and (4.19): If a book group

changes its section, binary yi has to be positive (i.e., 1); otherwise yi has to be 0. Constraint

(4.20): If book group i changes its section, t′′i has to be at least the height of the (uppermost)

shelf to put book group i on; otherwise t′′i can be 0.

4.3　Computational Experiments

This section presents the results of computational experiments using the model introduced

in Section 4.2.

We obtained an optimal relocation of the books of actual data of a part of the second floor

of NUL.

The books are about Social Science with classification numbers from 300 to 330; they are

categorized into 182 book groups. Table 4.1 shows the minimum, maximum, average, and sum

of their Bi and bi. The bookshelves are on the second floor of NUL (Figure 4.5).

Table 4.1: Actual data in Nanzan University Library

Minimum Maximum Average Sum

Bi 0.025 30.6 3.26 593.6

bi 0 0.947 0.09 16.4

The bookshelves are highly occupied. Each bookshelf has seven levels. The bookshelf groups

1 and 2 consist of 52 and 70 bookshelves, respectively. Hence, we have 854 shelves in total.

Therefore, the bookshelves have a margin for at most (854 − 593.6)/16.4 = 15.8 years. We set

n = 8, moderately.

We used MIPCL version 2.5.4 (win64) as our solver with the model implemented in Python

3.7.4. The computation was done on a computer running Microsoft Windows 10 with an Intel R⃝

35

Figure 4.5: Bookshelves on the second floor of Nanzan University Library

CoreTM i7-8550U CPU and 16GB of RAM.

It took about 54 seconds to obtain the optimal solution whose value is about 3, 811. The

optimal solution relocates 173 book groups, that is, 95.6% percent of the book groups have to

be rearranged. The problem for n = 9 was infeasible.

Therefore, we relaxed the original integer variables l
(j)
i , wj

i , t
′
i, and t′′i as a continuous variable.

It took about 34 seconds to obtain the optimal solution whose value is about 1, 311. The optimal

solution relocates 37 book groups (i.e., 20% percent of the book groups have to be rearranged).

Additionally, we can solve the problem for n = 11 with the continuous variables. It took

about 40 seconds to obtain the optimal solution whose value is about 3, 972. The optimal solution

relocates 176 book groups, that is, 97% percent of the book groups have to be rearranged. If we

accept that a section can start at the middle of a shelf, we can maintain the vacant sections for

8 years with fewer moving books. Also, we can maintain the vacant sections for a longer time.

This optimal solution is considered to be feasible in practice and more acceptable.

36

Chapter 5

Conclusion

In this research, we constructed the models for solving the problems at Nanzan University

using OR to reduce the burden on the staff. We formulate the TA shift scheduling problem as a

0-1 integer programming problem, the classroom assignment problem as a 0-1 integer and linear

programming problems, and the books relocation problem as a mixed-integer programming

problem using the actual data of Nanzan University. Then, using the models, we implemented

interactive assignment support systems: the shift scheduling support system for TAs and the

classroom assignment support system.

The TA shift scheduling support system and the classroom assignment support system can

flexibly respond to different conditions and provide an assignment quickly and reduce the work-

load of the staff. For the TA shift scheduling problem, we succeeded in reducing the working

time to about 1/25 and improving the schedule preparation time by using the shift scheduling

support system for TAs, compared to manual work. For the classroom assignment problem, even

the staff who is not accustomed to assigning classes to classrooms can quickly obtain an initial

schedule that satisfies all the conditions and requirements and performs assignments without

difficulty by using the classroom assignment support system. We also found from the computa-

tional experiments the necessity to improve the system so that the staff can freely change the

cost of the edges in the future.

For the book relocation problem, we obtained the optimal relocation of the books of a part

of the second floor of NUL by using our constructed model. The results are acceptable for

practical use, and the CPU time to solve the problem is within the practical range. We will

consider the problem of the whole library by dividing the library into several parts and check

the effectiveness of the model and by the feedback from the library staff, we will improve the

model. In the future, we will implement a book relocation support system.

We will continue to improve the systems, and we will receive feedback from the staff concern-

ing improving the systems’ effectiveness and user-friendliness. As we mentioned in Chapter 1,

many universities have similar problems with assignments such as those introduced in this re-

search. Hence, we can contribute to improving the operational efficiency in such universities if

they introduce the systems. Our implemented systems consist of general conditions applied to

almost every university and conditions specific to Nanzan University. Therefore, the system can

be flexibly introduced to other universities only by modifying functions to acquire data from

the on-campus database or customizing the system to exclude the conditions specific to Nanzan

University.

37

Acknowledgment

First, I would like to express sincere appreciation to Professor Atsuo Suzuki whose com-

ments and suggestions were of inestimable value for my study. I am also deeply grateful to

Professors Masao Fukushima, Mihiro Sasaki, and Shungo Koichi for their support and guidance.

Without their support, I would not be able to complete this dissertation. I am also grateful to

Professors Hidetoshi Miura and Koichi Nakade who gave me constructive comments and warm

encouragement.

Second, I would like to thank Mr. Norihiko Omiya and Mr. Hitoshi Ikeuchi for supporting

my research activities. And, I am grateful to Mr. Kenji Kondo, Mr. Takeshi Kanda, Ms. Marie

Suzuki, Ms. Kumiko Kondo, and staff of Nanzan University for permission to use various data

for this dissertation. I also highly appreciate the feedback offered by them.

Finally, I express my gratitude to my family for supporting me with warm encouragement.

38

Bibliography

[1] Adrianto, D.: “Comparison using Particle Swarm Optimization and Genetic Algorithm for
Timetable Scheduling,” Journal of Computer Science, Vol. 10, No. 2, pp. 341–346 (2014)

[2] Babaei, H., Karimpour, J. and Hadidi, A.: “A Survey of Approaches for University Course
Timetabling Problem,” Journal of Computers & Industrial Engineering, Vol. 86, pp. 43–59
(2015)

[3] Camilo, T., Jairo R.M., Carlos, L.Q., Angélica, S., and Mónica, C.: “University Course
Scheduling Classroom Assignment,” Journal of Ingenieŕıa y Universidad, Vol. 18, No. 1,
pp. 59–75 (2014)

[4] Cooper, Michael D. and Wolthausen, J.: “Misplacement of Books on Library Shelves: A
Mathematical Model,” Journal of Library Quarterly, Vol. 47, No. 1, pp. 43–57 (1977)

[5] Daskalaki, S., Birbas, T., and Housos, E.: “An Integer Programming Formulation for a
Case Study in University Timetabling,” European Journal of Operational Research, Vol.
153, pp. 117–135 (2004)

[6] Furusawa, M. and Sasaki, M.: “大学におけるクォーター制に対応した教室割り当て問題 –南
山大学を例として –,” Academia. Sciences and Engineering : Journal of Nanzan Academic
Society, Vol. 19, pp. 39–47 (2019) (in Japanese)

[7] Horio, M.: “Application to a University Course Timetabling Problem by a General Project
Scheduler,” Journal of Liberal Arts, Nagoya University of Arts and Sciences, No. 4, pp.
61–74 (2008) (in Japanese)

[8] Horio, M.: “Development of a Practical System to Generate University Timetables,” Jour-
nal of Japan Industrial Management Association, Vol. 62, No. 1, pp. 1–11 (2011) (in
Japanese)

[9] Ikegami, A., Niwa, A., and Ohkura, M.: “我が国におけるナース・スケジューリング問題,”
Communications of the Operations Research Society of Japan, Vol. 41, No. 8, pp. 436–442
(1996) (in Japanese)

[10] Ito, M., Ohnishi, A., Suzuki, A., Imamura, A., and Ito, T.: “The Resident Scheduling
Problem – A Case Study at Aichi Medical University Hospital –,” Journal of Japan In-
dustrial Management Association, Vol. 68, No. 4E, pp. 259–272 (2018)

[11] Ito, M., Suzuki, A., and Fujiwara, Y.: “A Prototype Operating Room Scheduling System
– A Case Study at Aichi Medical University Hospital –,” Journal of Japan Industrial
Management Association, Vol. 67, No. 2E, pp. 202–214 (2016)

[12] Michael, W. C. and Craig, A. T.: “When Is the Classroom Assignment Problem Hard?,”
Institute for Operations Research and the Management Sciences, Vol. 40, No. 1 (suppl.),
pp. S28–S39 (1992)

[13] Ministry of Education, Culture, Sports, Science and Technology-Japan,
https://www.mext.go.jp/b menu/shingi/gijyutu/gijyutu4/toushin/attach/1337935.htm,
Japanese web site (accessed 2021-01-10)

39

[14] Nagumo, S. and Terashima, K.: “「図書館引っ越しらくらくキット」を用いた資料再配置
の実践報告,” Annual Report of the Hitotsubashi University Library Research Development
Office, No. 7, pp. 7-04-1–7-04-8 (2019) (in Japanese)

[15] Nakamoto, M.: “早稲田大学図書館 – 十字路に立つ大学図書館 –,” Journal of Information
Processing and Management, Vol. 45, No.6, pp. 428–430 (2002) (in Japanese)

[16] Nampo, K.: “明治大学図書館が抱える課題,” Bulletin of Meiji University Library, No. 24,
pp. I–III (2002) (in Japanese)

[17] Ogawa, T. and Hotta, K.: “Providing Support in Solving Course Timetabling Problem
at Bunkyo University,” Shonan Forum : Journal of Shonan Research Institute Bunkyo
University, No. 20, pp. 21–46 (2016) (in Japanese)

[18] Ohnishi, A. and Suzuki, A.: “TA勤務スケジューリング支援システム – 南山大学 S棟 学生
サポート窓口の事例 –,” Proceedings of the Forty-six Annual Meeting at Chubu chapter of
the Operations Research of Japan, pp. 2–5　 (2018) (in Japanese)

[19] Ohnishi, A. and Suzuki, A.: “A Prototype Subject-classroom Assignment Support System
– A Case Study at Nanzan University –,” Proceedings of the International Symposium on
Scheduling, pp. 172–177 (2019)

[20] Ohnishi, A., Suzuki, A., and Fujiwara, Y.: “麻酔科医の当番・当直勤務スケジューリング支
援システムの試作,” Proceedings of the Communications of the Operations Research Society
of Japan 2015 Spring Research Presentation,” pp. 88–89 (2015)

[21] Shiozawa, T. and Okabe, K.: “Development of the Complicated University Class Time
Table Making Program,” IPSJ Transactions on Computers and Education, No. 101, pp.
1–4 (2001) (in Japanese)

[22] Smalley, Hannah K. and Keskinocak, P.: “Automated Medical Resident Rotation and
Shift Scheduling to Ensure Quality Resident Education and Patient Care,” Health Care
Management Science, Vol. 30, pp. 1–23 (2014)

[23] Smalley, Hannah K. and Keskinocak, P.: “Physician Scheduling for Continuity: An Ap-
plication in Pediatric Intensive Care,” Journal of Interfaces, Vol. 45, No. 2, pp. 133–148
(2015)

[24] Suzuki, A. and Fujiwara, Y.: “手術室のスケジューリング支援システムについて,” Commu-
nications of the Operations Research Society of Japan, Vo. 58, No. 9, pp. 515–523 (2013)

[25] Suzuki, A., Sawaki, K., and Hasegawa, T.: “An OR/MS approach to managing Nanzan
Gakuen (Nanzan Educational Complex): From the strategic to the daily operational level,”
Journal of Interfaces, Vol .36, pp. 43–54 (2006)

[26] Tokunaga, T., Tanaka, Y., Kobayashi, T., Kutsumizu, Y., and Ikegami, A.: “Development
of a Staff Scheduling Model for Part-time Employees and a Support System,” Journal of
Information Processing Society of Japan. Transactions on mathematical modeling and its
applications, Vol. 8, No. 2, pp. 57–65 (2015) (in Japanese)

[27] Topaloglu, S. and Ozkarahan, I.: “A Constraint Programming-based Solution Approach
for Medical Resident Scheduling Problems,” Computers & Operations Research, Vol. 38,
No. 1, pp. 246-255 (2011)

[28] Yamamoto, K. and Suzuki, A.: “南山大学における入試監督者自動割当システムの作成,”
Communications of the Operations Research Society of Japan, Vol. 54, No. 6, pp. 335–341
(2009) (in Japanese)

40

[29] Yashiro, T.: “Bunkyo University Shonan Library – Its Role in the Activities of Edu-
cation and Research –,” Shonan Forum : Journal of Shonan Research Institute Bunkyo
University, No. 12, pp. 69–79 (2008) (in Japanese)

[30] AirSHIFT, Recruit Co., Ltd.,
https://airregi.jp/shift/, Japanese web site (accessed 2021-06-09).

[31] Hataluck, Knowledge Merchants Works Inc.,
https://hataluck.jp/lp/shift/, Japanese web site (accessed 2021-06-09).

[32] Shiftmation, Axicerse, Inc.,
https://www.shiftmation.com/, Japanese web site (accessed 2021-06-09).

[33] Timetabling of University, Chuo Computer Service. Inc.,
https://www.ccs1981.jp/daigakujikanwari/timetable/,
Japanese web site (accessed 2020-08-21).

[34] Timetabling System for the University, Global Systems Co., Ltd.,
https://www.gss-sys.co.jp/service/university/jikanwari/,
Japanese web site (accessed 2020-08-21).

1“Microsoft”, “Windows”, “Excel”, “Accessl”, and “VBA” are trademarks or registered trademarks of Mi-
crosoft Corporation in the United States and other countries

2“Intel Core” is trademark of Intel Corporation or its subsidiaries in the United States and other countries.

41

