Forcing a Club by a Generalized Fast Function

Tadatoshi MIYAMOTO

Abstract

We present a new proper poset that includes the least uncountable cardinal's closed and cofinal generic subset *D*. A generic uncountable partial function *S* is forced by the poset. We call *S* a generalized fast function. The domain of *S* is the set of *D*-accumulation points plus the smallest element of *D*. For any consecutive two elements x < y in the domain of *S*, the function *S* maps *x* to *S_x* in such a way that *S_x* is a subset of the open interval (*x*,*y*), is order-isomorphic to the set of the natural numbers and is cofinal below *y*. The elements of *D* in (*x*,*y*) are provided by *S_x*. The poset consists of finite conditions. In particular, *S_x* are forced by their initial segments.

Then, we present a proper poset that forces an uncountable generic family of countable models of a set theory fragment. This family was dubbed a morass-like symmetric system after it was projected down to a simplified gap-1 morass of Velleman. This post combines the poset's machinery for the generalized fast function with that of Aspero and Mota. As a result, the poset is made up of finite conditions and has a relevant chain condition.

Introduction

In [M2], we discuss a proper poset *P* composed of finite conditions and force an uncountable generic partial function *f* from ω_1 into ω_1 . Let *D* represent the domain of *f*. *D* is then a closed and cofinal subset of ω_1 . Let us use c_D to transitively collase *D* onto ω_1 . Let $\text{zero}(D) = \{d \in D \mid c_D(d) = 0\}$, $\text{suc}(D) = \{d \in D \mid c_D(d) \text{ is a successor ordinal}\}$, and $\lim_{n \to \infty} (D) = \{d \in D \mid c_D(d) \text{ is a limit ordinal}\}$. Then, they are the singleton set $\{0\}$, a set of successor ordinals, and a set of limit ordinals. In fact, for any $d \in D$, the next element of *d* in *D* is *f*(*d*)+1. Hence, *D* does not have a flexible partition.

In [M1], we find connections between Aspero and Mota's ([AM]) symmetric systems and morass-like structures, including simplified $(\omega_1, 1)$ -morasses of Velleman ([V1]). In general, we want an uncountable generic family \mathcal{N} of countable models of a set theory fragment, where \mathcal{N} is symmetric as in [AM] and the projection $D = \{\omega_1 \cap N \mid N \in \mathcal{N}\}$ is a closed and cofinal subset of ω_1 . Furthermore, we want \mathcal{N} to be partitioned into the three cells zero(\mathcal{N}), suc(\mathcal{N}), and $\lim(\mathcal{N})$ such that zero(D) = $\{\omega_1 \cap N \mid N \in \text{zero}(\mathcal{N})\}$, suc(D) = $\{\omega_1 \cap N \mid N \in \text{suc}(\mathcal{N})\}$, and $\lim(D) = \{\omega_1 \cap N \mid N \in \lim(\mathcal{N})\}$. Then, the projection $\mathcal{A} = \{\omega_2 \cap N \mid N \in \mathcal{N}\}$ is a simplified (ω_1 , 1)-morass as in [V1], although it is not as neat.

We first present a new proper poset P_{GFF} that forces C, $\langle S_{\delta} | \delta \in C \rangle$, and D such that (1) C

consists of countable limit ordinals and is a closed and cofinal subset of ω_1 . (2) For any consecutive two elements $\delta < \delta^+$ of *C*, S_{δ} is a cofinal subset in the open interval (δ, δ^+) and the order-type of S_{δ} is ω . (3) P_{GFF} forces *C* by the finite fragments and the S_{δ} by the associated initial segments. To form *D*, we take the union of *C* and the S_{δ} (all $\delta \in C$). As a result, each condition $p \in P_{\text{GFF}}$ knows which elements in its relevant field are in the cell suc(*D*) and in the union of the two cells zero(*D*) $\cup \lim(D)$. We prefer the formulation in which zero(*D*) is dependent on the generic filter.

Then, we present a new poset P_{MOR} , which is a variation on posets in [AM] and incorporates P_{GFF} machinery. Let H_{ω_2} denote the set of sets *x* whose transitive closures have sizes less than ω_2 . Then, H_{ω_2} is a transitive set model of a set theory fragment. The variant P_{MOR} forces a generic family of countable elementary H_{ω_2} -substructures. The family is known as a morass-like symmetric system, and it descends to an $(\omega_1, 1)$ -morass of Velleman ([V1]).

What is left to the readers is combining variations of these posets iteratively to force, say, a two-sorted morass-like symmetric system that carves out an $(\omega_1, 2)$ -morass of Velleman ([V2]).

§ 1. Generalized Fast Functions

We force a generalized fast function.

Definition. Let $p = f^{p} \in P_{GFF}$, if f^{p} is a function such that

- dom (f^{\flat}) is a finite set of countable limit ordinals.
- For each $\delta \in \text{dom}(f^{\flat}), f^{\flat}(\delta)$ is a finite set of countable ordinals *x* of any kind with $\delta < x$.
- For each $\delta_1 < \delta_2$ in dom (f^{\flat}) and each $x \in f^{\flat}(\delta_1)$, we demand $x < \delta_2$.

For p, q in P_{GFF} , let $q \le p$ in P_{GFF} , if dom $(f^q) \supseteq \text{dom}(f^p)$ and for each $\delta \in \text{dom}(f^p), f^q(\delta)$ end-extends $f^p(\delta)$, i.e., $f^q(\delta) \supseteq f^p(\delta)$ and for any $x \in f^p(\delta)$ and $y \in f^q(\delta)$, if y < x, then $y \in f^p(\delta)$.

Here are easy densities.

Lemma. (1) For any $p \in P_{GFF}$ and any $\eta < \omega_1$, there is $q \leq p$ in P_{GFF} such that there exists $\delta \in \text{dom}(f^q)$ with $\eta < \delta$.

(2) For any *p*∈*P*_{GFF}, any consecutive two elements δ < δ⁺ in dom(*f^p*), and any η < δ⁺, there exists *q* ≤ *p* in *P*_{GFF} s.t. *f^q*(δ) is a proper end-extension of *f^p*(δ) and the largest element of *f^q*(δ) is greater than η.

We observe that P_{GFF} is proper.

Lemma. Let λ be a sufficiently large regular cardinal with $P_{\text{GFF}} \in H_{\lambda}$. Let M be a countable elementary substructure of H_{λ} with $P_{\text{GFF}} \in M$. Let $q \in P$ with $\omega_1 \cap M \in \text{dom}(f^q)$. Then q is (P_{GFF}, M) -generic.

Proof. Let us simply denote *P* for P_{GFF} . Let *D* be a predense subset of *P* with $D \in M$. We want to show that $D \cap M$ is predense below *q* in *P*. We provide a typical construction that would

be dubbed an amalgamation. By performing amalgamations densely below *q* in *P*, we would be done. Thus here simply suppose that there exists $d \in D$ with $q \leq d$ in *P*. We first fix *M*-copies (q', d', δ') of $(q, d, \omega_1 \cap M)$ as follows. Since

$$M \prec H_{\lambda} \models ``\exists (q', d', \delta') \text{ s.t. } q' \in P, d' \in D, \delta' \in \operatorname{dom}(f^{q'}), q' \leq d' \text{ in } P, \text{ and } f^{q} \lceil (\omega_{1} \cap M) = f^{q'} \lceil \delta''', q' \leq d' \in \mathcal{A}$$

and relevant parameters, say, *P*, *D*, $f^q \upharpoonright (\omega_1 \cap M)$ are all in *M*, we have $(q', d', \delta') \in M$ as described. Now we form a common extension *r* of *q* and *q'* in *P*, where $r = q' \cup q$. Notice that $r \leq d' \in D \cap M$.

Lemma. Let *G* be P_{GFF} generic over the ground model *V*. In the generic extension *V*[*G*], we form \dot{C} , \dot{S}_{δ} (for each $\delta \in \dot{C}$), and \dot{D} as follows.

$$\dot{C} = \bigcup \{ \operatorname{dom}(f^{p}) \mid p \in G \},$$
$$\dot{S}_{\delta} = \bigcup \{ f^{p}(\delta) \mid p \in G, \ \delta \in \operatorname{dom}(f^{p}) \},$$
$$\dot{D} = \dot{C} \cup \bigcup \{ \dot{S}_{\delta} \mid \delta \in \dot{C} \}.$$

Then

(1) \dot{C} consists of countable limit ordinals and is a closed and cofinal subset of ω_1 .

(2) For any consecutive two elements $\delta < \delta^+$ of \dot{C} , \dot{S}_{δ} is a subset of the open interval (δ , δ^+), is cofinal below δ^+ , and is of order-type ω .

(3) \dot{D} is a closed and cofinal subset of ω_1 s.t.

- The least element of \dot{D} is the least element c_0 of \dot{C} .
- The set of accumulation points of \dot{D} is $\dot{C} \setminus \{c_0\}$.
- For any consecutive two elements δ < δ⁺ in C
 , we have S
 _δ = (δ, δ⁺) ∩ D
 .
 We may call the map (δ ↦ S
 _δ | δ ∈ C
) a generalized fast function.

Proof. We just outline that \dot{C} is closed. Suppose η is a countable limit ordinal such that $\eta \cap \dot{C}$ is cofinal below η witnessed by $w \in G$. We may assume that there exist (δ_0, δ_1) s.t. δ_0 is the largest element of dom $(f^w) \cap \eta$ and δ_1 is the least element of $\{\delta \in \text{dom}(f^w) \mid \eta \leq \delta\}$. Argue by contradiction that $\eta = \delta_1$. Hence $\eta \in \dot{C}$ witnessed by w itself.

§ 2. Morass-like Symmetric Systems

We introduce a proper poset P_{MOR} that incorporates the machinery of P_{GFF} and forces a type of symmetric system $\dot{\mathcal{N}}$ of [AM]. Due to the machinery, the projection { $\omega_1 \cap N \mid N \in \dot{\mathcal{N}}$ } is a closed and cofinal subset of ω_1 and the projection { $\omega_2 \cap N \mid N \in \dot{\mathcal{N}}$ } is an (ω_1 ,1)-morass of Velleman in [V1], though it is not a neat one yet. We set notations *C* and lim(*C*). Let

$$C = \{ N \in [H_{\omega_2}]^{\omega} \mid N \prec H_{\omega_2} \}.$$

 \square

$$\lim(C) = \{M \in C \mid M = \bigcup (C \cap M)\}.$$

Hence for any $M \in \lim(C)$ and any $x \in M$, there exists $N \in C$ with $x \in N \in M$. Since *N* is countable and $M \prec H_{\omega_2}$ knows about it, it entails that *N* is a proper subset of *M*.

Definition. We say a finite subfamily \mathcal{N} of C is morass-like symmetric (a morass-like symmetric system), if \mathcal{N} satisfies the following.

- (iso) For any $N, M \in \mathcal{N}$, if $\omega_1 \cap N = \omega_1 \cap M$, then there exists an \in -isomorphism $\phi_{NM}: N \longrightarrow M$ s.t. $\phi_{NM}(x) = x$ for all $x \in N \cap M$.
- (up) For any $N_3, N_2 \in \mathcal{N}$, if $\omega_1 \cap N_3 < \omega_1 \cap N_2$, then there exists $N_1 \in \mathcal{N}$ s.t. $N_3 \in N_1$ and $\omega_1 \cap N_1 = \omega_1 \cap N_2$.
- (down) For any $N_1, N_2, N_3 \in \mathcal{N}$, if $N_3 \in N_1$ and $\omega_1 \cap N_1 = \omega_1 \cap N_2$, then $\phi_{N_1N_2}(N_3) \in \mathcal{N}$.
- For each N∈ N, either (Zero), (One), or (Two) holds, where (Zero) N ∩ N = Ø.
 (One) There exists N₀∈N ∩ N s.t. N ∪ N = {N₀} ∩ (N ∩ N₀).
 (Two) There exist N₁, N₂ ∈N ∩ N s.t.
 ★ω₁ ∩ N₁ = ω₁ ∩ N₂,
 ★Δ := (ω₂ ∩ N₁) ∩ (ω₂ ∩ N₂) < (ω₂ ∩ N₁) \ Δ < (ω₂ ∩ N₂) \ Δ ≠ Ø,
 ★N ∩ N = {N₁, N₂ } ∪ (N ∩ N₂) ∪ (N ∩ N₁).
 Notice if N satisfies (iso), (up), and (down), then N satisfies (sliding) and (interpolating) by [AM].
 (sliding) For each N₃, N₂∈N, if ω₁ ∩ N₃ < ω₁ ∩ N₂, then there exists N₄∈N ∩ N₂ with ω₁ ∩ N₄ = ω₁ ∩ N₃.

(interpolating) For each $N_3, N, N_1 \in \mathcal{N}$, if $\omega_1 \cap N_3 < \omega_1 \cap N < \omega_1 \cap N_1$ and $N_3 \in N_1$, then there exists $M \in \mathcal{N}$ s.t. $N_3 \in M \in N_1$ and $\omega_1 \cap M = \omega_1 \cap N$.

Next suppose we are in a cardinal preserving generic extension V[G] over the ground model V. We say an infinite subfamily $\dot{\mathcal{N}} \in V[G]$ of C is morass-like symmetric (a morass-like symmetric system), if $\dot{\mathcal{N}}$ satisfies (iso), (up), (down), (par), and (cof), where

- (iso) For any $N, M \in \dot{N}$, if $\omega_1 \cap N = \omega_1 \cap M$, then there exists an \in -isomorphism ϕ_{NM} : $N \longrightarrow M$ s.t. $\phi_{NM}(x) = x$ for all $x \in N \cap M$.
- (up) For any $N_3, N_2 \in \dot{\mathcal{N}}$, if $\omega_1 \cap N_3 < \omega_1 \cap N_2$, then there exists $N_1 \in \dot{\mathcal{N}}$ s.t. $N_3 \in N_1$ and $\omega_1 \cap N_1 = \omega_1 \cap N_2$.
- (down) For any $N_1, N_2, N_3 \in \dot{\mathcal{N}}$, if $N_3 \in N_1$ and $\omega_1 \cap N_1 = \omega_1 \cap N_2$, then $\phi_{N_1N_2}(N_3) \in \dot{\mathcal{N}}$.
- (par) $\dot{\mathcal{N}}$ gets partitioned into the three cells $\operatorname{zero}(\dot{\mathcal{N}})$, $\operatorname{suc}(\dot{\mathcal{N}})$, and $\lim(\dot{\mathcal{N}})$, where

$$\operatorname{zero}(\dot{\mathcal{N}}) = \{N \in \dot{\mathcal{N}} \mid \dot{\mathcal{N}} \cap N = \emptyset\},\$$
suc $(\dot{\mathcal{N}}) = \{N \in \dot{\mathcal{N}} \mid \text{either (One) or (Two)}\},\$ where

(One) There exists $N_0 \in \dot{\mathcal{N}} \cap N$ s.t. $\dot{\mathcal{N}} \cap N = \{N_0\} \cap (\dot{\mathcal{N}} \cap N_0)$. (Two) There exist $N_1, N_2 \in \dot{\mathcal{N}} \cap N$ s.t. $\star \omega_1 \cap N_1 = \omega_1 \cap N_2$, $\star \Delta := (\omega_2 \cap N_1) \cap (\omega_2 \cap N_2) < (\omega_2 \cap N_1) \setminus \Delta < (\omega_2 \cap N_2) \setminus \Delta \neq \emptyset$, $\star \dot{\mathcal{N}} \cap N = \{N_1, N_2\} \cup (\dot{\mathcal{N}} \cap N_2) \cup (\dot{\mathcal{N}} \cap N_1).$

$$\lim(\dot{\mathcal{N}}) = \{ N \in \dot{\mathcal{N}} \mid N = \bigcup (\dot{\mathcal{N}} \cap N) \}.$$

- $(\operatorname{cof}) \bigcup \dot{\mathcal{N}} = (H_{\omega_2})^V$. Notice that if $\dot{\mathcal{N}}$ is (cof), then it is (dir), where
- (dir) For any $N, M \in \dot{N}$, there exists $K \in \dot{N}$ with $N, M \in K$.

Notice that for any morass-like symmetric system, it is necessary that the projection $\{\omega_1 \cap N \mid N \in \dot{N}\}$ is a closed and cofinal subset of ω_1 . We force a stationary morass-like symmetric system.

Definition. Let $p = (f^p, \mathcal{N}^p) \in P_{MOR}$, if

- $f^{p} \in P_{GFF}$.
- \mathcal{N}^{p} is a finite morass-like symmetric subfamily of C s.t. $\bigcup \mathcal{N}^{p} \in \mathcal{N}^{p}$.
- dom $(f^{\flat}) \cup \bigcup \{f^{\flat}(\delta) \mid \delta \in \text{dom}(f^{\flat})\} = \{\omega_1 \cap N \mid N \in \mathcal{N}^{\flat}\}.$
- For each $N \in \mathcal{N}^p$, if $\omega_1 \cap N \in \text{dom}(f^p)$, then we demand not just $N \in C$ but $N \in \text{lim}(C)$. For $p, q \in P, q \leq p$ in P, if $f^q \leq f^p$ in P_{GFF} and $\mathcal{N}^q \supseteq \mathcal{N}^p$.

Lemma. (Freeze) For any $p \in P_{MOR}$, any $\delta \in \text{dom}(f^p)$, any consecutive two $\eta < \eta^+$ in { δ } $\cup f^p(\delta)$, and any $N \in \mathcal{N}^p$, if $\omega_1 \cap N = \eta^+$ and N has a pair $N_1, N_2 \in \mathcal{N}^p \cap N$ that satisfy (Two), then for any $q \leq p$ in P_{MOR} , the pair remains so with respect to q. In particular, $\mathcal{N}^q \cap N = \{N_1, N_2\} \cap (\mathcal{N}^q \cap N_1) \cup (\mathcal{N}^q \cap N_2)$ holds.

Proof. The consecutive two $\eta < \eta^+$ in $\{\delta\} \cup f^{\flat}(\delta)$ remain so in $\{\delta\} \cup f^q(\delta)$. Since $N \in \mathcal{N}^q$ and $\omega_1 \cap N = \eta^+$, either (One) or (Two) holds with (q, N, η, η^+) . But $N_1, N_2 \in \mathcal{N}^q \cap N$ and $\omega_1 \cap N_1 = \omega_1 \cap N_2 = \eta$. Hence $\{M \in \mathcal{N}^{\flat} \cap N \mid \omega_1 \cap M = \eta\} = \{N_1, N_2\} = \{M \in \mathcal{N}^q \cap N \mid \omega_1 \cap M = \eta\}$.

Lemma. (Dense) (1) For any $p \in P_{MOR}$ and any $\eta < \omega_1$, there exists $q \leq p$ in P_{MOR} s.t. there exists $\delta \in \text{dom}(f^q)$ with $\eta < \delta$.

(2) For any $p \in P_{MOR}$, any two consecutive $\delta < \delta^+$ in dom (f^p) , and any $M \in \mathcal{N}^p$ with $\omega_1 \cap M = \delta^+$, and any $x \in M$, there exists (q,N) s.t. $q \leq p$ in P_{MOR} and $N \in \mathcal{N}^q$ with $x \in N$.

Proof. For (1), we use the assumption $\bigcup \mathcal{N}^{p} \in \mathcal{N}^{p}$ to extend. We outline (2). Since $M \in \lim(C)$, we have $M = \bigcup(C \cap M)$. Since $x, f^{p}(\delta), \mathcal{N}^{p} \cap M \in M$, there exists $N \in C \cap M$ s.t. $x, f^{p}(\delta), \mathcal{N}^{p} \cap M \in N$. Let $q = (f^{q}, \mathcal{N}^{q})$, where f^{q} and f^{p} are the same except $f^{q}(\delta) = f^{p}(\delta) \cup \{\omega_{1} \cap N\}$ and \mathcal{N}^{q} is formed by considering appropriate copies of N as follows.

$$\mathcal{N}^{q} = \{ \phi_{MM'}(N) \mid M' \in \mathcal{N}^{p}, \omega_{1} \cap M' = \omega_{1} \cap M \} \cup \mathcal{N}^{p}.$$

Then this (q, N) works.

Lemma. (Proper) Let λ be a sufficiently large regular cardinal. Let M be a countable

elementary substructure of H_{λ} with, say, C, $P_{\text{MOR}} \in M$. In particular, we have $H_{\omega_2} \cap M \in \text{lim}(C)$. Let $q \in P_{\text{MOR}}$ s.t. $H_{\omega_2} \cap M \in \mathcal{N}^q$ and $\omega_1 \cap M \in \text{dom}(f^q)$. Then q is (P_{MOR}, M) -generic.

Proof. We first observe that $H_{\omega_2} \cap M = \bigcup (C \cap (H_{\omega_2} \cap M))$. Let $x \in H_{\omega_2} \cap M$. It suffices to find $N \in C \cap M = C \cap (H_{\omega_2} \cap M)$ with $x \in N$. Since

$$C, x \in M \prec H_{\lambda} \models " \exists N \in C x \in N",$$

we have $N \in C \cap M$ with $x \in N$.

Let us simply denote *P* for P_{MOR} . Let *D* be predense in *P* with $D \in M$. We want to show $D \cap M$ is predense below *q*. We present a typical argument assuming that there exists $d \in D$ with $q \leq d$ in *P*. It suffices to argue similarly dense below *q*. We first fix *M*-copies (q',d',M') of (q,d,M_1) , where $M_1 = H_{\omega_2} \cap M$, as follows. Since

 $H_{\lambda} \models \text{``} \exists (q', d', M') \text{ s.t. } q' \leq d' \text{ in } P, d' \in D, M' \in \mathcal{N}^{q'}, (f^{q} \upharpoonright M_{1}) = f^{q'} \upharpoonright M', (\mathcal{N}^{q} \cap M_{1}) = \mathcal{N}^{q'} \cap M'''$ and

$$P, D, f^q \lceil M_1, \mathcal{N}^q \cap M_1 \in M \prec H_1$$

we have $(q',d',M') \in M$ as described. We then form a commom extension r of q' and q in P_{MOR} as follows. Let $f' = f^{q'} \cup f^q$ and consider appropriate copies of $\mathcal{N}^{q'}$ to form the least finite symmetric

$$\mathcal{N}^{r} = \{ \phi_{M_{1}M_{2}}(K) \mid K \in \mathcal{N}^{q'}, M_{2} \in \mathcal{N}^{q}, \omega_{1} \cap M_{2} = \omega_{1} \cap M_{1} \} \cup \mathcal{N}^{q}.$$

Note that if $K \in \lim(C) \cap M_1$, then $\phi_{M_1M_2}(K) \in \lim(C)$. Notice that $r \leq d' \in D \cap M$.

To form copies, we also have

Lemma. Let λ be a sufficiently large regular cardinal. Let M_1, M_2, M_3 be three countable elementary substructures of H_{λ} s.t. *C*, $P_{\text{MOR}} \in M_1 \cap M_2$, $\{M_1, M_2\} \in M_3$, and there exists an isomorphism $\phi: M_1 \longrightarrow M_2$ that satisfies $\phi(x) = x$ for all $x \in M_1 \cap M_2$. Furthermore,

$$\Delta := (\omega_2 \cap M_1) \cap (\omega_2 \cap M_2) < (\omega_2 \cap M_1) \setminus \Delta < (\omega_2 \cap M_2) \setminus \Delta \neq \emptyset.$$

Let $p \in P_{MOR} \cap M_1$ and let $p' = \phi(p)$. Then $p' = (f^p, \phi(\mathcal{N}^p)) \in P_{MOR} \cap M_2$ and p and p' have a common extension r in P_{MOR} s.t. $H_{\omega_2} \cap M_1$, $H_{\omega_2} \cap M_2 \in \mathcal{N}^r$ and $\bigcup \mathcal{N}^r = H_{\omega_2} \cap M_3$.

Proof. Routine.

Lemma. (CH) P_{MOR} has the ω_2 -cc.

Proof. Let $\langle p_i | i < \omega_2 \rangle$ be an indexed family of conditions of P_{MOR} . We want to find i < j s.t. p_i and p_j have a common extension r in P_{MOR} . To this end, let λ be a sufficiently large regular cardinal. For each $i < \omega_2$, let us fix a countable elementary substructure M_i of H_{λ} with C, P_{MOR} , $p_i \in M_i$. By CH, we may assume that $\langle M_i | i < \omega_2 \rangle$ forms a Δ -system s.t. for any $i < j < \omega_2$, M_i

and M_j are isomorphic by the map $\phi_{ij}: M_i \longrightarrow M_j$ s.t. $\phi_{ij}(p_i) = p_j$ and $\phi_{ij}(x) = x$ for all $x \in M_i \cap M_j$. Furthermore,

$$\Delta := (\omega_2 \cap M_i) \cap (\omega_2 \cap M_j) < (\omega_2 \cap M_i) \setminus \Delta < (\omega_2 \cap M_j) \setminus \Delta \neq \emptyset.$$

Fix any two $i < j < \omega_2$. Then p_i and p_j are compatible in P_{MOR} .

Lemma. Let *G* be P_{MOR} -generic over the ground model *V*. In the generic extension V[G], we form $\dot{C}, \dot{S}_{\delta}$ (for each $\delta \in \dot{C}$), \dot{D} , and $\dot{\mathcal{N}}$ as follows.

$$\dot{C} = \bigcup \{ \operatorname{dom}(f^{\flat}) \mid p \in G \},$$

$$\dot{S}_{\delta} = \bigcup \{ f^{\flat}(\delta) \mid \delta \in \operatorname{dom}(f^{\flat}), p \in G \},$$

$$\dot{D} = \dot{C} \cup \bigcup \{ \dot{S}_{\delta} \mid \delta \in \dot{C} \},$$

$$\dot{\mathcal{N}} = \bigcup \{ \mathcal{N}^{\flat} \mid p \in G \}.$$

Then

- \dot{C} is a closed and cofinal subset of ω_1 .
- For any two consecutive $\delta < \delta^+$ elements of \dot{C} , \dot{S}_{δ} is a subset of the open interval (δ , δ^+), cofinal below δ^+ , and is of order-type ω .
- \dot{D} is a closed and cofinal subset of ω_1 s.t. the least element of \dot{D} is c_0 , where c_0 is the least element of \dot{C} , the set of accumulation points of \dot{D} is $\dot{C} \setminus \{c_0\}$, and the set of successor points of \dot{D} is $\bigcup \{\dot{S}_{\delta} \mid \delta \in \dot{C}\}$.
- $\dot{D} = \{ \omega_1 \cap N \mid N \in \dot{\mathcal{N}} \}.$
- $\operatorname{zero}(\dot{\mathcal{N}}) = \{N \in \dot{\mathcal{N}} \mid \omega_1 \cap N \text{ is the least element of } \dot{D}\}.$
- suc $(\dot{\mathcal{N}}) = \{N \in \dot{\mathcal{N}} \mid \omega_1 \cap N \text{ is a successor point of } \dot{D}\}.$
- $\lim(\dot{\mathcal{N}}) = \{N \in \dot{\mathcal{N}} \mid \omega_1 \cap N \text{ is an accumulation point of } \dot{D}\}.$
- $\dot{\mathcal{N}}$ gets partitioned into the three cells zero($\dot{\mathcal{N}}$), suc($\dot{\mathcal{N}}$), and lim($\dot{\mathcal{N}}$).
- $\dot{\mathcal{N}}$ is morass-like symmetric.

Proof. We outline on zero(\dot{N}), suc(\dot{N}), and lim(\dot{N}).

• $\operatorname{zero}(\dot{\mathcal{N}}) = \{N \in \dot{\mathcal{N}} \mid \omega_1 \cap N = c_0\}.$

Proof. \subseteq : Let $N \in \text{zero}(\dot{\mathcal{N}})$. Then $\dot{\mathcal{N}} \cap N = \emptyset$. We know that $\omega_1 \cap N \in \dot{D}$. Suppose $\omega_1 \cap N > c_0$. By (up) and (down), or simply by (sliding), there must be $K \in \dot{\mathcal{N}}$ s.t. $K \in \dot{\mathcal{N}} \cap N$. This is a contradiction.

 \supseteq : We know c_0 is the least element of \dot{D} . Hence $\dot{\mathcal{N}} \cap N = \emptyset$.

•
$$\operatorname{suc}(\dot{\mathcal{N}}) = \{N \in \dot{\mathcal{N}} \mid \exists \delta \in \dot{C} \omega_1 \cap N \in \dot{S}_{\delta}\}.$$

Proof. \subseteq : Let $N \in \text{suc}(\dot{\mathcal{N}})$. Then

$$\omega_1 \cap N \in \dot{D} = \dot{C} \cup \bigcup \{ \dot{S}_{\delta} \mid \delta \in \dot{C} \} = \{ \omega_1 \cap M \mid M \in \dot{\mathcal{N}} \}.$$

 \square

Let $\omega_1 \cap N \in \dot{C}$. Since $\dot{\mathcal{N}} \cap N \neq \emptyset$, we have $\omega_1 \cap N > c_0$. We know the set of accumulation points $\lim(\dot{D})$ of \dot{D} is $\dot{C} \setminus \{c_0\}$. Hence $\omega_1 \cap N \in \lim(\dot{D})$. Hence there exist no $N_1, N_2 \in \dot{\mathcal{N}} \cap N$ s.t. $\omega_1 \cap N_1 = \omega_1 \cap N_2$ and

$$\dot{\mathcal{N}} \cap N = \{N_1, N_2\} \cup (\dot{\mathcal{N}} \cap N_1) \cup (\dot{\mathcal{N}} \cap N_2).$$

 \supseteq : Let $N \in \dot{N}$ and $\delta \in \dot{C}$ s.t $\omega_1 \cap N \in \dot{S}_{\delta}$. Let $\eta < \eta^+$ be two consecutive members of { δ } $\cup \dot{S}_{\delta}$ with $\eta^+ = \omega_1 \cap N$. We have two cases.

Case. There exists a unique $N_0 \in \dot{\mathcal{N}} \cap N$ s.t. $\omega_1 \cap N_0 = \eta$. Then $\dot{\mathcal{N}} \cap N = \{N_0\} \cup (\dot{\mathcal{N}} \cap N_0)$.

Case. There exist $N_1, N_2 \in \dot{\mathcal{N}} \cap N$ s.t. $\omega_1 \cap N_1 = \omega_1 \cap N_2 = \eta$ and

$$\Delta := (\omega_2 \cap N_1) \cap (\omega_2 \cap N_2) < (\omega_2 \cap N_1) \setminus \Delta < (\omega_2 \cap N_2) \setminus \Delta \neq \emptyset.$$

Then

$$\dot{\mathcal{N}} \cap N = \{N_1, N_2\} \cup (\dot{\mathcal{N}} \cap N_1) \cup (\dot{\mathcal{N}} \cap N_2).$$

Hence $N \in \operatorname{suc}(\dot{\mathcal{N}})$.

• $\lim(\dot{N}) = \{N \in \dot{N} \mid \omega_1 \cap N \in \lim(\dot{D})\}.$ *Proof*. \subseteq : Let $N \in \lim(\dot{N})$. Since $\bigcup(\dot{N} \cap N) = N$, we have $\omega_1 \cap N \in \lim(\dot{D})$. We know $\lim(\dot{D}) = \dot{C} \setminus \{c_0\}.$

 \supseteq : Let $N \in \dot{\mathcal{N}}$ with $\omega_1 \cap N \in \lim(\dot{D})$. We have two cases.

Case. $(\omega_1 \cap N) \cap \dot{C}$ is cofinal below $\omega_1 \cap N$. We know

$$\omega_1 \cap N \in \dot{C} = \bigcup \{ \operatorname{dom}(f^p) \mid p \in G \}.$$

Hence for any $x \in N$, there exists $M \in \dot{\mathcal{N}} \cap N$ with $x \in M$. Hence

$$N = \bigcup (\dot{\mathcal{N}} \cap N).$$

Case. $(\omega_1 \cap N) \cap \dot{C}$ is bounded below $\omega_1 \cap N$. Since $\omega_1 \cap N \in \lim(\dot{D}) = \dot{C} \setminus \{c_0\}$, we have $\delta < \delta^+$ s.t. δ is the largest element of $(\omega_1 \cap N) \cap \dot{C}$, $\delta < \delta^+$ are two consecutive elements of \dot{C} s.t. $\omega_1 \cap N = \delta^+$. Then \dot{S}_{δ} is cofinal below $\omega_1 \cap N$. For any $x \in N$, there exists $M \in \dot{N} \cap N$ with $x \in M$. Hence

$$N = \bigcup (\mathcal{N} \cap N).$$

 \square

Lemma. For N_3 , $N_2 \in \dot{N}$, the following (1) and (2) are equivalent.

- (1) $\omega_2 \cap N_3$ is a proper subset of $\omega_2 \cap N_2$.
- (2) There exists $N_4 \in \dot{\mathcal{N}} \cap N_2$ s.t. $\omega_2 \cap N_3 = \omega_2 \cap N_4$.

Proof. (1) implies (2) : By taking intersections, we have $\omega_1 \cap N_3 \leq \omega_1 \cap N_2$. If $\omega_1 \cap N_3 =$

 $\omega_1 \cap N_2$, then by (iso), we have $\phi_{N_3N_2}[\omega_2 \cap N_3] = \omega_2 \cap N_2$. But $\phi_{N_3N_2}$ fixes $N_3 \cap N_2$ pointwise. Hence $\phi_{N_3N_2}[\omega_2 \cap N_3] = \omega_2 \cap N_3$. Then $\omega_2 \cap N_2 = \omega_2 \cap N_3$. This is absurd. Hence $\omega_1 \cap N_3 < \omega_1 \cap N_2$. Then by (up), there exists $N_1 \in \mathcal{N}$ s.t. $N_3 \in N_1$ and $\omega_1 \cap N_1 = \omega_1 \cap N_2$. Let $N_4 = \phi_{N_1N_2}(N_3)$. Then by (down), $N_4 \in \mathcal{N} \cap N_2$ and $\omega_2 \cap N_4 = \phi_{N_1N_2}[\omega_2 \cap N_3] = \omega_2 \cap N_3$.

Corollary. Let $\dot{\mathcal{A}} = \{ \omega_2 \cap N \mid N \in \dot{\mathcal{N}} \}$. Then $\dot{\mathcal{A}}$ is a simplified $(\omega_1, 1)$ -morass in the sense of definition 2.6 in [V1].

Proof. We list facts related to each item.

(well founded) If $\omega_2 \cap N$ is a proper subset of $\omega_2 \cap M$, then $\omega_1 \cap N \le \omega_1 \cap M$.

(homogeneous) Let $N \in \dot{\mathcal{N}}$ and $\dot{\mathcal{A}} [(\omega_2 \cap N) = \{Z \in \dot{\mathcal{A}} \mid Z \text{ is a proper subset of } \omega_2 \cap N\}$. Then $\dot{\mathcal{A}} [(\omega_2 \cap N) = \{\omega_2 \cap M \mid M \in \dot{\mathcal{N}} \cap N\}$ holds. Notice $\omega_2 \cap N$, $\omega_2 \cap M$ are of the same rank iff $\omega_1 \cap N = \omega_1 \cap M$.

(locally small) $\dot{\mathcal{N}} \cap N$ is countable.

(directed) If $N_1, N_2 \in \dot{\mathcal{N}}$, then by (cof), there exists $N \in \dot{\mathcal{N}}$ with $N_1, N_2 \in N$. This we dubbed (dir). In particular, $\omega_2 \cap N_1$, $\omega_2 \cap N_2$ are proper subsets of $\omega_2 \cap N$.

(locally almost directed): If $N \in \text{zero}(\dot{N})$, then $\dot{A} \lceil (\omega_2 \cap N)$ is vacuously directed. If $N \in \text{suc}(\dot{N})$, then either $\dot{N} \cap N$ satisfies (One) and so $\dot{A} \lceil (\omega_2 \cap N)$ is directed, or (Two) and so has a maximal split end. If $N \in \text{lim}(\dot{N})$, then $\dot{A} \lceil (\omega_2 \cap N)$ is directed.

(cover): By (cof), we have $\omega_2 = \bigcup \dot{A}$.

References

[AM] D. Aspero, M. Mota, Forcing consequences of PFA together with the continuum large, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6103-6129.

[M1] T. Miyamoto, Matrices of isomorphic models and morass-like structures, RIMS Kokyuroku (2014), no. 1895, 79-102. https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/195849/1/1895-09.pdf

[M2] —, Forcing continuous epsilon-chains with finite side conditions, RIMS Kokyuroku (2020), no. 2164, 142-148.

https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/2164-12.pdf

[V1] D. Velleman, Simplified morasses, J. Symbolic Logic 49 (1984), no. 1, 257-271.

[V2] ----, Simplified gap-2 morasses. Ann. Pure Appl. Logic 34 (1987), no. 2, 171-208.

miyamoto@nanzan-u.ac.jp Mathematics Nanzan University 18 Yamazato-cho, Showa-ku, Nagoya 466-8673 Japan