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Forcing a Club by a Generalized Fast Function

Tadatoshi Miyamoro

Abstract

We present a new proper poset that includes the least uncountable cardinal’s closed and cofinal
generic subset D. A generic uncountable partial function S is forced by the poset. We call S a
generalized fast function. The domain of S is the set of D-accumulation points plus the smallest
element of D. For any consecutive two elements x < y in the domain of S, the function S maps x
to S, in such a way that S, is a subset of the open interval (x,y), is order-isomorphic to the set of
the natural numbers and is cofinal below y. The elements of D in (x,y) are provided by S,. The
poset consists of finite conditions. In particular, S, are forced by their initial segments.

Then, we present a proper poset that forces an uncountable generic family of countable models
of a set theory fragment. This family was dubbed a morass-like symmetric system after it was
projected down to a simplified gap-1 morass of Velleman. This post combines the poset’s
machinery for the generalized fast function with that of Aspero and Mota. As a result, the poset is
made up of finite conditions and has a relevant chain condition.

Introduction

In [M2], we discuss a proper poset P composed of finite conditions and force an uncountable
generic partial function ffrom w, into w,. Let D represent the domain of f. D is then a closed
and cofinal subset of w ;. Let us use ¢, to transitively collase D onto w;. Let zero(D) ={dED |
cp(@) =0}, suc(D) ={dE€D | ¢, (@) is a successor ordinal}, and lim (D) ={dED | c,(d) is a limit
ordinal}. Then, they are the singleton set {0}, a set of successor ordinals, and a set of limit
ordinals. In fact, for any d € D, the next element of d in D is f (d)+1. Hence, D does not have a
flexible partition.

In [M1], we find connections between Aspero and Mota’s ([AM]) symmetric systems and
morass-like structures, including simplified (w;,1)-morasses of Velleman ([V1]). In general,
we want an uncountable generic family A/ of countable models of a set theory fragment, where
N is symmetric as in [AM] and the projection D={w,N N| NEN} is a closed and cofinal
subset of w,. Furthermore, we want \V to be partitioned into the three cells zero(/N), suc(N),
and lim (V) such that zero(D) ={w;N N | NEzero (M)}, suc(D) ={w,;N N | NEsuc (\)},
andim(D) ={w,; N N|N € lim(N)}. Then, the projection A={w, N N|NE N} is a
simplified (w ,1)-morass as in [V1], although it is not as neat.

We first present a new proper poset P that forces C, ( S;| 6 € C), and D such that (1) C



184 Forcing a Club by a Generalized Fast Function

consists of countable limit ordinals and is a closed and cofinal subset of w,. (2) For any
consecutive two elements 6 < § © of C, S; is a cofinal subset in the open interval (6, *) and
the order-type of S; is w. (3) Pgpr forces C by the finite fragments and the S; by the associated
initial segments. To form D, we take the union of C and the S; (all 6 € (). As a result, each
condition p € Py knows which elements in its relevant field are in the cell suc(D) and in the
union of the two cells zero(D) U lim(D). We prefer the formulation in which zero(D) is
dependent on the generic filter.

Then, we present a new poset Pyor, Which is a variation on posets in [AM] and incorporates
Psrr machinery. Let H,,, denote the set of sets ¥ whose transitive closures have sizes less than
w,. Then, H,, is a transitive set model of a set theory fragment. The variant Py forces a
generic family of countable elementary H,,-substructures. The family is known as a morass-
like symmetric system, and it descends to an (w,1)-morass of Velleman ([V1]).

What is left to the readers is combining variations of these posets iteratively to force, say, a
two-sorted morass-like symmetric system that carves out an (w,2)-morass of Velleman ([V2]).

§ 1. Generalized Fast Functions

We force a generalized fast function.
Definition. Let p =f” € Py, if £ is a function such that

e dom(f?) is a finite set of countable limit ordinals.
e For each § Edom(f?), /() is a finite set of countable ordinals x of any kind with J <x.
e For each §,< J,in dom(f”) and eachxEf"( ,), we demand x< & ,.

For p, q in Pep, let ¢ < p in Py, if dom(f%) 2 dom(f?) and for each 6 Edom(f?), ()
end-extends f*(9), i.e., f1(9)2f"(6) and for any xEf(5) and yE£*(9), if y<x, then yE
(6).

Here are easy densities.

Lemma. (1) For any pE P and any 1 < w,, there is ¢ < p in Py such that there exists o
Edom(f’) with n < 6.
(2) For any p € Py, any consecutive two elements 6 < § * in dom(f”), and any n < 6 *, there
exists ¢ < p in Py s.t. f9(9) is a proper end-extension of f*(J) and the largest element of
f(0) is greater than 7.

We observe that P is proper.

Lemma. Let 1 be a sufficiently large regular cardinal with P;;EH ,. Let M be a countable
elementary substructure of H, with PgEM. Let g€EP with w,NMEdom(f?). Then ¢ is
(Pspr, M)-generic.

Proof . Let us simply denote P for Pgrr. Let D be a predense subset of P with DEM. We
want to show that DN M is predense below g in P. We provide a typical construction that would
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be dubbed an amalgamation. By performing amalgamations densely below ¢ in P, we would be
done. Thus here simply suppose that there exists dED with ¢ <d in P. We first fix M-copies
(q,d’, 0" of (g, d, w,NM) as follows. Since

M=H,=*3(,d, 6 st.q ER.A'ED, 6 'Edom("), ¢'<d in P and f'[ (w,N\M)=f"T 5",

and relevant parameters, say, P, D, f* [ (w,;NM) are all in M, we have (¢’,d,6") € M as
described. Now we form a common extension 7 of ¢ and ¢ in P, where » = q¢' U ¢q. Notice that
r<deDNM.

]

Lemma. Let G be P-generic over the ground model V. In the generic extension V [G], we
form C, S, (for each 0 €C), and D as follows.

¢'=J tdom(f) | pE6),
$,=J " (8) |pEG, 6 Edom(£))},
p=culJts,] 6 €c).
Then
(1) C consists of countable limit ordinals and is a closed and cofinal subset of w,.
(2) For any consecutive two elements d < § * of C', S is a subset of the open interval (J,
6 "), is cofinal below ¢ *, and is of order-type w.
(3) Dis a closed and cofinal subset of w, s.t.
e The least element of D is the least element ¢, of C'.
e The set of accumulation points of Dis C\ {¢,}.

e For any consecutive two elements 6 < ¢ “inC',wehave S;= (J,0 ") N D.
We may call the map (6 — S; | § EC) a generalized fast function.

Proof. We just outline that C is closed. Suppose 7 is a countable limit ordinal such that #

N C'is cofinal below # witnessed by w € G. We may assume that there exist (J,, J,) s.t. J, is

the largest element of dom(f*) N # and 0, is the least element of { 6 € dom(f*) | n <o }.
Argue by contradiction that # = §,. Hence 1 €C witnessed by w itself.

U]

§ 2. Morass-like Symmetric Systems

We introduce a proper poset Pyor that incorporates the machinery of P and forces a type
of symmetric system A of [AM]. Due to the machinery, the projection {w, N N|N € N }isa
closed and cofinal subset of w; and the projection {w, N N| N € N }is an (w,,1)-morass of
Velleman in [V1], though it is not a neat one yet. We set notations C' and lim(C'). Let

C= (NE [H,,]” |N<H,,.
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lim() = {Mec | M= ©n m}.

Hence for any M € lim(C') and any x € M, there exists N €C withx € N € M. Since N is
countable and M < H,,, knows about it, it entails that N is a proper subset of M.

Definition. We say a finite subfamily A of C is morass-like symmetric (a morass-like
symmetric system), if A/ satisfies the following.

e (iso) Forany N, MEN, if w,N N= w;N M, then there exists an €-isomorphism ¢ yy; - N
— Ms.t. ¢yx)=xforallx&ENN M.

e (up) For any N,,N,€N , if w,;N N,<w;N N,, then there exists N;EN s.t. N, € N, and
w; N N;=w;N N,

¢ (down) For any N,,N,, N;EN, if NyqEN, and w,N N;= w ;N N,, then ¢ yive (V;) EN.

e For each NE N/, either (Zero), (One), or (Two) holds, where
(Zero) NN N =0).
(One) There exists Ne€EN N Ns.t. NU N={N,} N (NN N,).
(Two) There exist N;, N, EN'N Ns.t.
*w; N Ny=w, N N,
*A:=(w,N N) N (w,NNp) < (w,N N1)\ A< (w,N N2)\ A=,
*N'N N={N,, N,}U WN N,)UWN N).
Notice if N satisfies (iso), (up), and (down), then A satisfies (sliding) and (interpolating)
by [AM].
(sliding) For each N, N,€N, if w;N N;<w;N N,, then there exists N, EN N N, with
w,N Ny=w;N N;.
(interpolating) For each N,NN,€N,if w,N N;<w;N N<w;N N; and N;EN;, then
there exists MEN s.t. N;EMEN, and w, N M= w,;N N.

Next suppose we are in a cardinal preserving generic extension V[G] over the ground model
V. We say an infinite subfamily " €V[G] of C is morass-like symmetric (a morass-like
symmetric system), if N satisfies (iso), (up), (down), (par), and (cof ), where

e (iso) For any N, ME N , if w,N N=w,N M, then there exists an € -isomorphism ¢ y:
N—Mst. ¢yy) =xforallx&N N M.

e (up) For any N,N, € N, if w,N N,<w,;N N, then there exists N;E N s.t. N;EN, and
w;NN;=w; NN,

e (down) For any N,,N,, N;€ N, if N;€N, and w; N Ny=w,; N Ny, then ¢ iy No) E N .

e (par) N gets partitioned into the three cells zero(\), suc(N), and lim( N ), where

zero(N) ={NEN| N'N N=0},
suc(\) ={NEN | either (One) or (Two)}, where

(One) There exists N, EN' N Ns.t. NN N={NJNWNN N).

(Two) There exist N;, N, EA'N Ns.t.

*w,N Ny=w;N N,,

* A= (w,NNYN (w,N N <(w,N N1)\ A< (w,N Nz)\ A=,
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*NNN={N,N,}U W NN)UWN N N,).

lim(\) ={NEN | N=Jwn m1.

e (cof) UN=(H,)".
Notice that if A/ is (cof), then it is (dir), where

e (dir) For any N, ME N, there exists KE N with N, MEK.

Notice that for any morass-like symmetric system, it is necessary that the projection {w;N
N| NeN}is a closed and cofinal subset of w;. We force a stationary morass-like symmetric
system.

Definition. Let p = (f*, N”) € Pyor, if

.prPGFF-

e N'?is a finite morass-like symmetric subfamily of C s.t. [J N?EN”.

e dom(fH)UUF"(5) | 6 Edom(f")}={w,N N| NEN"}.

e For each NEN?, if w,N NEdom(f?), then we demand not just NEC but NELim ().
For p, gEP, q < pin P, if f* < f’ in Pypp and N'2N”.

Lemma. (Freeze) For any p € Pyox, any 0 Edom(f?), any consecutive two 7 < n " in {6}
U f?(5), and any NEN?, if o, N= n " and N has a pair N, N, €N’ N N that satisfy (Two),
then for any ¢ < p in Pyx, the pair remains so with respect to ¢. In particular, NN N={N,,
NN (VN N) U WN N,) holds.

Proof . The consecutive two 7 <y "in {0 }U f?(J) remain so in { 6 }U f(J). Since NE
N%and w,N N= 5 °, either (One) or (Two) holds with (g,N, n,n *). But N;, N,SN’N N and
w,N N;=w;N N,=n. Hence IMEN"N N|w,N M= n}={N, Ny={MEN'NN| w,N
M= n}.

]

Lemma. (Dense) (1) For any pE Py and any 1 < w,, there exists ¢ < p in Pyor S.t. there
exists 6 € dom(f?) with n <.
(2) For any p & Pyo, any two consecutive 6 < ¢ * in dom(f”), and any MEN? with w,N M=
6 7, and any x€M, there exists (¢,N) s.t. ¢ < p in Pyog and NEN’ with xEN.

Proof. For (1), we use the assumption U AN?EN? to extend. We outline (2). Since ME
lim(C), we have M=UJCNM). Since x, f'(6),N’N MEM, there exists NECN Mst.x,
77(0), N'N MEN. Letq= (f', N), where f’ and f? are the same except f'(J)=r"(5)U
{w;N N} and N is formed by considering appropriate copies of N as follows.

N'={puyN) |[MEN",0,N M'=w,N M}U N”.
Then this (g,N) works.

Lemma. (Proper) Let A be a sufficiently large regular cardinal. Let M be a countable
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elementary substructure of H, with, say, C', Pyjor©M. In particular, we have H,,, MElim(C).
Let gEPyor st. H,,N MEN" and w,N MEdom(f’). Then q is (Pyor M)-generic.

Proof . We first observe that H,,, M= uen (H,,NM)). LetxeH,,N M. It suffices to find
Necn M=Ccn (H,,N M) withxEN. Since
C,x€M-<H,=“3 NEC y&N’,
we have NeC' N M with xEN.

Let us simply denote P for Pyor. Let D be predense in P with DEM. We want to show DN
M is predense below q. We present a typical argument assuming that there exists d€D with
g <din P. It suffices to argue similarly dense below ¢q. We first fix M-copies (¢’,d",M") of
(g,d,M,), where M,=H,,N M, as follows. Since

H, =43 @\d'M)st.q <d inP.d €D, MEN", {TM)=f'TM, W'N M)=N"NM"
and
P D, fIIM, N'"N M\ eM<H,,

we have (¢',d’ ,M')EM as described. We then form a commom extension 7 of ¢" and ¢ in
Pyor as follows. Letf"=f%"U f? and consider appropriate copies of N’  to form the least finite
symmetric

N'={ ¢y, E) | KEN", MLEN", 0,0 My=w,N M}UN".
Note that if KELM(C) N M, then ¢ y, 1, (K) ELim(C). Notice that» <d'€DN M.
To form copies, we also have

Lemma. Let 1 be a sufficiently large regular cardinal. Let M,, M,, M, be three countable
elementary substructures of H, s.t. C, Pyor€EM,N M,, {M,, M,} €M,, and there exists an
isomorphism ¢ :M; — M, that satisfies ¢ (x) =x for all x€M, N M,. Furthermore,

A:=(w,N M)N (w,N M)<(w,N M)\ A<(w,N M)\ A 0.

Let pEPyorN M, andletp'= ¢ (»). Then p' = (f*, p (N?)) EPyorN M, and p and p  have a
common extension 7 in Py s.t. H,,N My, H,,N MyEN" and UN"=H,,N M.

Proof. Routine.
[]
Lemma. (CH) Py has the w ,cc.

Proof. Let { p; | i< w,) be an indexed family of conditions of Pyoz. We want to find ¢ < j s.t.
p; and p; have a common extension 7 in Pyor. To this end, let 1 be a sufficiently large regular
cardinal. For each i< w,, let us fix a countable elementary substructure M; of H, with C', Pyog,
9, €M,. By CH, we may assume that { M; | i< w,) forms a A -system s.t. for any 1<j< w,, M;
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and M; are isomorphic by the map ¢ ;:M;— M, s.t. ¢ ;(p;) =p;and ¢ ;(x) =x for all xEM;N
M,. Furthermore,

A= (w,N M)N (w,N M)<(w,N M)\ A<(w,N M)\ A +0.
Fix any two i<j< w,. Then p; and p, are compatible in Pyqy.

Lemma. Let G be Pyor-generic over the ground model V. In the generic extension V[G], we
form C, S5 (for each 6 €C), D, and N as follows.

¢=Utdom(s" | pE6,
&, =UIF"(9) | 6 Edom(s) pEG),
D=culis,| 6 €0y,
N=Uw"1pe0r.
Then

e ('is a closed and cofinal subset of w,.

e For any two consecutive 0 < § * elements of C', S is a subset of the open interval (J,
6 "), cofinal below J *, and is of order-type w.

e Dis a closed and cofinal subset of w, s.t. the least element of D is ¢,, where ¢, is the least
element of C, the set of accumulation points of D is C' \{¢,}, and the set of successor points
of DisU (S| 6 €C}.

e zero(\V) = {NEN | w,;N Nis the least element of D}.

e suc(NV) = {NEN | w;N Nis asuccessor point of D}.

e lim(\) ={NEN | w,N Nis an accumulation point of D}.

e N gets partitioned into the three cells zero( N'), suc(N), and lim ().

¢ A/ is morass-like symmetric.

Proof . We outline on zero( N ), suc(N'), and lim(N).
e zero(N) = {NEN | w,N N=cy}.

Proof. C: Let NEzero(N). Then N'N N=0. We know that w,N NED. Suppose w;N
N>c,. By (up) and (down), or simply by (sliding), there must be KEN s.t. KEN N N. This is
a contradiction.

D : We know ¢, is the least element of D . Hence N'N N=0.

e suc(\V) ={NEN| 3o EC w,N NES,.
Proof. C: Let NEsuc(V). Then

w,N NED=CUJiS,| 6 €CY=1w,N M| MEN}.
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Let w,N NEC. Since N'N N= 0, we have w,N N>¢,. We know the set of accumulation points
lim(D) of D is C'\{¢,}). Hence w,N NELm(D). Hence there exist no N;, N,EN N Ns.t. w,N
N,=w,N N, and

N NN={N,NJU W NN)U (N N N,).

D:Let NEN and 6 EC st w,N NES;. Let n < 5 * be two consecutive members of { J }
US; with # “=w,N N. We have two cases.

Case. There exists a unique NN N Nst. w;N N, = 5. Then N N N={N}UWNN
N,).
Case. There exist N, N,EN N Nst. w,N N,=w,N N,= 5 and

Az=(w,N N) N (w,N N)<(w,N N)\ A<(w,N N\ A #0.
Then
N N N={N, NJUW N NY)UW N N,).
Hence NEsuc(N).
[]

o lim(\) = {INEN | w,N NElim(D)}.
Proof. C:Let NElim(N). Since UW N N) =N, we have w,N NEIm(D). We know
lim(D) = \feo}.
D: Let NE N with w,N NElim (D). We have two cases.
Case. (w;N N)N ( is cofinal below w,N N. We know

w,;N NEC={dom(f") | pEG).
Hence for any €N, there exists MEN N N with x€M. Hence
N=UWN N).

Case. (w;N N)N ¢ is bounded below w, N N. Since w,N NELm(D) =C \{¢,}, we have
0 <6 " st o isthe largest element of (w,N N)N ¢, § < & * are two consecutive elements
of C's.t. w,N N=6".Then §; is cofinal below w,N N. For any xEN, there exists MEN N
N with x&M. Hence

N=UWN N).

Lemma. For N,, N,E N, the following (1) and (2) are equivalent.

(1) w, N Nyis a proper subset of w,MN N,.
(2) There exists N,EN N N, s.t. w,N Ny=w,N N,

Proof. (1) implies (2) : By taking intersections, we have w,; N\ Ny < w, N N,. If ;N N; =
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w,N N,, then by (iso), we have ¢ yn[w.N N3] =w,N N,. But ¢ n, fixes N;N N, pointwise.
Hence ¢ ynlw,N N;]=w,N N,. Then w,N N, =w,N N,. This is absurd. Hence w;N
N,< w,N N,. Then by (up), there exists N,EN s.t. N;EN, and w,;N N,=w,N N,. LetN, =
® nyn,(N5). Then by (down), NSEN N Nyand w,N Ny= ¢ v, w,N Nol = w,N Na.

Corollary. Let A={w,N N| NEN}. Then A is a simplified (w,, 1)-morass in the sense of
definition 2.6 in [V1].

Proof . We list facts related to each item.

(well founded) If w,N N is a proper subset of w,MN M, then w,;N N<w;N M.

(homogeneous) Let NEN and Al (w,N N)= {ZEA | Z is a proper subset of w,N N}.
Then Al (w,N N)={w,N M |MEN N N} holds. Notice w,N N, w,N M are of the same
rank iff o, N N=w,N M.

(locally small) ' N Nis countable.

(directed) If N,N,EN, then by (cof), there exists NEN with N;,N,EN. This we dubbed
(dir). In particular, w,N N;, w,N N, are proper subsets of w,MN N.

(locally almost directed): If NE zero(\ ), then Al (w,N N) is vacuously directed. If NE
suc(N), then either A/ N N satisfies (One) and so Al (w,N N) is directed, or (Two) and so
has a maximal split end. If N €lim(N), then Al (w,N N) is directed.

(cover): By (cof), we have w,= A.
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