Forcing a Club by a Generalized Fast Function

Tadatoshi MIYAMOTO

Abstract

 We present a new proper poset that includes the least uncountable cardinal's closed and cofinal generic subset *D* . A generic uncountable partial function *S* is forced by the poset. We call *S* a generalized fast function. The domain of *S* is the set of *D* -accumulation points plus the smallest element of *D*. For any consecutive two elements $x \leq y$ in the domain of *S*, the function *S* maps *x* to S_x in such a way that S_x is a subset of the open interval (x,y) , is order-isomorphic to the set of the natural numbers and is cofinal below *y*. The elements of *D* in (x, y) are provided by S_x . The poset consists of finite conditions. In particular, S_x are forced by their initial segments.

 Then, we present a proper poset that forces an uncountable generic family of countable models of a set theory fragment. This family was dubbed a morass-like symmetric system after it was projected down to a simplified gap-1 morass of Velleman. This post combines the poset's machinery for the generalized fast function with that of Aspero and Mota. As a result, the poset is made up of finite conditions and has a relevant chain condition.

Introduction

 In [M2], we discuss a proper poset *P* composed of finite conditions and force an uncountable generic partial function *f* from ω_1 into ω_1 . Let *D* represent the domain of *f*. *D* is then a closed and cofinal subset of ω_1 . Let us use c_D to transitively collase *D* onto ω_1 . Let zero (*D*) = { $d \in D$ | $c_p(d) = 0$, suc(*D*) = { $d \in D \mid c_p(d)$ is a successor ordinal}, and lim (*D*) = { $d \in D \mid c_p(d)$ is a limit ordinal). Then, they are the singleton set $\{0\}$, a set of successor ordinals, and a set of limit ordinals. In fact, for any $d \in D$, the next element of *d* in *D* is $f(d)+1$. Hence, *D* does not have a flexible partition.

 In [M1], we find connections between Aspero and Mota's ([AM]) symmetric systems and morass-like structures, including simplified $(\omega_1,1)$ -morasses of Velleman ([V1]). In general, we want an uncountable generic family $\mathcal N$ of countable models of a set theory fragment, where $\mathcal N$ is symmetric as in [AM] and the projection *D*={ ω_1 ∩ *N*| *N*∈*N*} is a closed and cofinal subset of ω_1 . Furthermore, we want N to be partitioned into the three cells zero (N) , suc (N) , and $\lim(N)$ such that $\text{zero}(D) = \{ \omega_1 \cap N \mid N \in \text{zero}(N) \}$, $\text{succ}(D) = \{ \omega_1 \cap N \mid N \in \text{succ}(N) \}$, and $\lim(D) = {\omega_1 \cap N \mid N \in \lim(N)}$. Then, the projection $\mathcal{A} = {\omega_2 \cap N \mid N \in \mathcal{N}}$ is a simplified $(\omega_1, 1)$ -morass as in [V1], although it is not as neat.

We first present a new proper poset P_{GFF} that forces C , $\langle S_{\delta} | \delta \in C \rangle$, and D such that (1) C

consists of countable limit ordinals and is a closed and cofinal subset of ω_1 . (2) For any consecutive two elements $\delta \leq \delta^+$ of *C*, S_{δ} is a cofinal subset in the open interval (δ , δ^+) and the order-type of S_{δ} is ω . (3) P_{GFF} forces *C* by the finite fragments and the S_{δ} by the associated initial segments. To form *D*, we take the union of *C* and the S_{δ} (all $\delta \in C$). As a result, each condition $p \in P_{GFF}$ knows which elements in its relevant field are in the cell suc(*D*) and in the union of the two cells zero (*D*) \cup lim (*D*). We prefer the formulation in which zero (*D*) is dependent on the generic filter.

Then, we present a new poset P_{MOR} , which is a variation on posets in [AM] and incorporates $P_{\text{\tiny GFF}}$ machinery. Let H_{ω_2} denote the set of sets *x* whose transitive closures have sizes less than ω_2 . Then, H_{ω_2} is a transitive set model of a set theory fragment. The variant P_{MOR} forces a generic family of countable elementary H_{ω} -substructures. The family is known as a morasslike symmetric system, and it descends to an $(\omega_1, 1)$ -morass of Velleman ([V1]).

 What is left to the readers is combining variations of these posets iteratively to force, say, a two-sorted morass-like symmetric system that carves out an $(\omega_1, 2)$ -morass of Velleman ([V2]).

§1. Generalized Fast Functions

We force a generalized fast function.

Definition. Let $p = f^p \in P_{GFF}$, if f^p is a function such that

- dom (f^p) is a finite set of countable limit ordinals.
- For each $\delta \in \text{dom}(f^p), f^p(\delta)$ is a finite set of countable ordinals *x* of any kind with $\delta \leq x$.
- For each $\delta_1 \leq \delta_2$ in dom (f^{ρ}) and each $x \in f^{\rho}(\delta_1)$, we demand $x \leq \delta_2$.

For *p*, *q* in P_{GFF} , let $q \leq p$ in P_{GFF} , if dom(f^q) \supseteq dom(f^p) and for each $\delta \in$ dom(f^p), $f^q(\delta)$ end-extends $f^{\rho}(\delta)$, i.e., $f^{\rho}(\delta) \supseteq f^{\rho}(\delta)$ and for any $x \in f^{\rho}(\delta)$ and $y \in f^{\rho}(\delta)$, if $y \leq x$, then $y \in$ $f^{\hat{p}}(\delta)$.

Here are easy densities.

Lemma. (1) For any $p \in P_{\text{GFF}}$ and any $\eta \leq \omega_1$, there is $q \leq p$ in P_{GFF} such that there exists δ \in dom(f^q) with $\eta < \delta$.

(2) For any $p \in P_{GFF}$, any consecutive two elements $\delta < \delta^+$ in dom(f^p), and any $\eta < \delta^+$, there exists $q \leq p$ in P_{GFF} s.t. $f^q(\delta)$ is a proper end-extension of $f^{\rho}(\delta)$ and the largest element of $f^q(\delta)$ is greater than η .

We observe that P_{GFF} is proper.

Lemma. Let λ be a sufficiently large regular cardinal with $P_{GFF} \in H_{\lambda}$. Let *M* be a countable elementary substructure of H_{λ} with $P_{GFF} \in M$. Let $q \in P$ with $\omega_1 \cap M \in \text{dom}(f^q)$. Then *q* is (*P*GFF*, M*) -generic.

Proof. Let us simply denote *P* for P_{GFF} . Let *D* be a predense subset of *P* with $D \in M$. We want to show that *D∩M* is predense below *q* in *P*. We provide a typical construction that would

be dubbed an amalgamation. By performing amalgamations densely below *q* in *P* , we would be done. Thus here simply suppose that there exists $d \in D$ with $q \leq d$ in *P*. We first fix *M*-copies (q', d', δ') of $(q, d, \omega_1 \cap M)$ as follows. Since

$$
M \prec H_{\lambda} \models \text{``}\exists (q', d', \delta') \text{ s.t. } q' \in P, d' \in D, \delta' \in \text{dom}(f^{q'}), q' \leq d' \text{ in } P \text{, and } f^{q} \lceil (\omega_1 \cap M) = f^{q'} \lceil \delta \rceil,
$$

and relevant parameters, say, *P*, *D*, $f^q \Gamma(\omega_1 \cap M)$ are all in *M*, we have $(q', d', \delta') \in M$ as described. Now we form a common extension *r* of *q* and *q*[′] in *P*, where $r = q' \cup q$. Notice that *r* ≤ *d*^{ϵ} ∈ *D* ∩ *M*.

Lemma. Let *G* be P_{GFF} generic over the ground model *V*. In the generic extension *V* [*G*], we form \dot{C} , \dot{S}_{δ} (for each $\delta \in \dot{C}$), and \dot{D} as follows.

$$
\dot{C} = \bigcup \{ \text{dom}(f^{\rho}) \mid p \in G \},
$$

$$
\dot{S}_{\delta} = \bigcup \{ f^{\rho}(\delta) \mid p \in G, \ \delta \in \text{dom}(f^{\rho}) \},
$$

$$
\dot{D} = \dot{C} \cup \bigcup \{ \dot{S}_{\delta} \mid \ \delta \in \dot{C} \}.
$$

Then

(1) \dot{C} consists of countable limit ordinals and is a closed and cofinal subset of ω_1 .

(2) For any consecutive two elements $\delta \leq \delta^+$ of \dot{C} , \dot{S}_δ is a subset of the open interval (δ , δ^{\dagger}), is cofinal below δ^{\dagger} , and is of order-type ω .

(3) \dot{D} is a closed and cofinal subset of ω_1 s.t.

- The least element of \dot{D} is the least element c_0 of \dot{C} .
- The set of accumulation points of \dot{D} is $\dot{C} \setminus \{c_0\}$.
- For any consecutive two elements $\delta \leq \delta^+$ in \dot{C} , we have $\dot{S}_\delta = (\delta, \delta^+) \cap \dot{D}$. We may call the map $\langle \delta \mapsto \dot{S}_{\delta} | \delta \in \dot{C} \rangle$ a generalized fast function.

Proof. We just outline that C is closed. Suppose η is a countable limit ordinal such that η \cap *C* is cofinal below η witnessed by $w \in G$. We may assume that there exist (δ_0, δ_1) s.t. δ_0 is the largest element of dom(f^w) \cap η and δ_1 is the least element of { $\delta \in \text{dom}(f^w) \mid \eta \leq \delta$ }. Argue by contradiction that $\eta = \delta_1$. Hence $\eta \in \dot{C}$ witnessed by *w* itself.

§ 2. Morass-like Symmetric Systems

We introduce a proper poset P_{MOR} that incorporates the machinery of P_{GFF} and forces a type of symmetric system N of [AM]. Due to the machinery, the projection $\{\omega_1 \cap N \mid N \in \mathcal{N}\}\$ is a closed and cofinal subset of ω_1 and the projection $\{\omega_2 \cap N \mid N \in \mathcal{N}\}\$ is an $(\omega_1, 1)$ -morass of Velleman in [V1], though it is not a neat one yet. We set notations C and $\lim (C)$. Let

$$
C = \{N \in [H_{\omega_2}]^{\omega} \mid N \prec H_{\omega_2}\}.
$$

□

□

$$
\lim(C) = \{M \in C \mid M = \bigcup (C \cap M)\}.
$$

Hence for any $M \in \text{lim}(C)$ and any $x \in M$, there exists $N \in C$ with $x \in N \in M$. Since N is countable and $M \prec H_{\omega_2}$ knows about it, it entails that *N* is a proper subset of *M*.

Definition. We say a finite subfamily $\mathcal N$ of C is morass-like symmetric (a morass-like symmetric system), if N satisfies the following.

- (iso) For any *N, M*∈*N*, if $\omega_1 \cap N = \omega_1 \cap M$, then there exists an ∈ isomorphism $\phi_{\text{M}M}:N$ \longrightarrow *M* s.t. $\phi_{NM}(x) = x$ for all $x \in N \cap M$.
- (up) For any $N_3N_2 \in \mathcal{N}$, if $\omega_1 \cap N_3 \leq \omega_1 \cap N_2$, then there exists $N_1 \in \mathcal{N}$ s.t. $N_3 \in N_1$ and $\omega_1 \cap N_1 = \omega_1 \cap N_2$.
- (down) For any N_1N_2 , $N_3 \in \mathcal{N}$, if $N_3 \in N_1$ and $\omega_1 \cap N_1 = \omega_1 \cap N_2$, then $\phi_{NN_2}(N_3) \in \mathcal{N}$.
- For each $N \in \mathcal{N}$, either (Zero), (One), or (Two) holds, where $(Zero)$ $\mathcal{N} \cap N = \emptyset$. (One) There exists $N_0 \in \mathcal{N} \cap N$ s.t. $\mathcal{N} \cup N = \{N_0\} \cap (\mathcal{N} \cap N_0)$. (Two) There exist $N_1, N_2 \in \mathcal{N} \cap N$ s.t. $\star \omega_1 \cap N_1 = \omega_1 \cap N_2$ $\star \Delta := (\omega_2 \cap N_1) \cap (\omega_2 \cap N_2) \leq (\omega_2 \cap N_1) \setminus \Delta \leq (\omega_2 \cap N_2) \setminus \Delta \neq \emptyset$ **★** $N \cap N = \{N_1, N_2\}$ ∪ ($N \cap N_2$)∪ ($N \cap N_1$). Notice if $\mathcal N$ satisfies (iso), (up), and (down), then $\mathcal N$ satisfies (sliding) and (interpolating) by [AM]. (sliding) For each $N_3, N_2 \in \mathcal{N}$, if $\omega_1 \cap N_3 \leq \omega_1 \cap N_2$, then there exists $N_4 \in \mathcal{N} \cap N_2$ with $\omega_1 \cap N_4 = \omega_1 \cap N_3$.

(interpolating) For each N_3 , N , $N_1 \in \mathcal{N}$, if $\omega_1 \cap N_3 \leq \omega_1 \cap N \leq \omega_1 \cap N_1$ and $N_3 \in N_1$, then there exists $M \in \mathcal{N}$ s.t. $N_3 \in M \in \mathcal{N}_1$ and $\omega_1 \cap M = \omega_1 \cap N$.

 Next suppose we are in a cardinal preserving generic extension *V*[*G*] over the ground model *V*. We say an infinite subfamily $\dot{\mathcal{N}} \in V[G]$ of C is morass-like symmetric (a morass-like symmetric system), if \dot{N} satisfies (iso), (up), (down), (par), and (cof), where

- (iso) For any *N*, $M \in \mathcal{N}$, if $\omega_1 \cap N = \omega_1 \cap M$, then there exists an \in -isomorphism ϕ_{NM} : $N \rightarrow M$ s.t. $\phi_{NM}(x) = x$ for all $x \in N \cap M$.
- (up) For any $N_3N_2 \in \mathcal{N}$, if $\omega_1 \cap N_3 \leq \omega_1 \cap N_2$, then there exists $N_1 \in \mathcal{N}$ s.t. $N_3 \in N_1$ and $\omega_1 \cap N_1 = \omega_1 \cap N_2$.
- (down) For any $N_1, N_2, N_3 \in \mathcal{N}$, if $N_3 \in N_1$ and $\omega_1 \cap N_1 = \omega_1 \cap N_2$, then $\phi_{N_1N_2}(N_3) \in \mathcal{N}$.
- (par) $\mathcal N$ gets partitioned into the three cells zero $(\mathcal N)$, suc $(\mathcal N)$, and lim $(\mathcal N)$, where

$$
zero(\mathcal{N}) = \{ N \in \mathcal{N} \mid \mathcal{N} \cap N = \emptyset \},
$$

$$
succ(\mathcal{N}) = \{ N \in \mathcal{N} \mid \text{either (One) or (Two)} \}, \text{where}
$$

(One) There exists $N_0 \in \mathcal{N} \cap N$ s.t. $\mathcal{N} \cap N = \{N_0\} \cap (\mathcal{N} \cap N_0)$. (Two) There exist $N_1, N_2 \in \mathcal{N} \cap N$ s.t. $\star \omega_1 \cap N_1 = \omega_1 \cap N_2$ $\star \Delta := (\omega_2 \cap N_1) \cap (\omega_2 \cap N_2) \leq (\omega_2 \cap N_1) \setminus \Delta \leq (\omega_2 \cap N_2) \setminus \Delta \neq \emptyset$. **★** $\dot{N} \cap N = \{N_1, N_2\} \cup (\dot{N} \cap N_2) \cup (\dot{N} \cap N_1).$

$$
\lim(\dot{w}) = \{N \in \dot{N} \mid N = \bigcup (\dot{N} \cap N)\}.
$$

- (cof) $\bigcup \mathcal{N} = (H_{\omega_2})^V$. Notice that if \dot{N} is (cof), then it is (dir), where
- (dir) For any *N*, $M \in \mathcal{N}$, there exists $K \in \mathcal{N}$ with *N*, $M \in K$.

Notice that for any morass-like symmetric system, it is necessary that the projection $\{\omega_1 \cap$ $N | N \in \mathcal{N}$ is a closed and cofinal subset of ω_1 . We force a stationary morass-like symmetric system.

Definition. Let $p = (f^p, \mathcal{N}^p) \in P_{\text{MOR}}$, if

- \bullet $f^{\mathrm{\textit{p}}}\text{\textit{\text{}}\in\! P_{\mathrm{GFF}}$.
- \mathcal{N}^{ρ} is a finite morass-like symmetric subfamily of C s.t. $\bigcup \mathcal{N}^{\rho} \in \mathcal{N}^{\rho}$.
- dom $(f^p) \cup \bigcup \{f^p(\delta) \mid \delta \in \text{dom}(f^p)\} = \{w_1 \cap N \mid N \in \mathcal{N}^p\}.$
- For each $N \in \mathcal{N}^p$, if $\omega_1 \cap N \in \text{dom}(f^p)$, then we demand not just $N \in \mathcal{C}$ but $N \in \text{lim}(\mathcal{C})$. For p, $q \in P$, $q \leq p$ in P, if $f^q \leq f^p$ in P_{GFF} and $\mathcal{N}^q \supseteq \mathcal{N}^p$.

Lemma. (Freeze) For any $p \in P_{MOR}$, any $\delta \in \text{dom}(f^{\ell})$, any consecutive two $\eta \leq \eta^+$ in { δ } $∪ f^p(δ)$, and any *N*∈*N*^{*p*}, if ω₁∩ *N* = $η⁺$ and *N* has a pair *N*₁, *N*₂∈*N*^{*p*}∩ *N* that satisfy (Two), then for any $q \leq p$ in P_{MOR} , the pair remains so with respect to *q*. In particular, $\mathcal{N}^q \cap N = \{N_1, N_2\}$ N_2 }∩ (\mathcal{N}^q ∩ N_1)∪(\mathcal{N}^q ∩ N_2) holds.

Proof. The consecutive two $\eta \leq \eta^+$ in { δ } \cup *f*^{*p*}(δ) remain so in { δ } \cup *f*^{*q*}(δ). Since *N*∈ *q* and $\omega_1 \cap N = \eta^+$, either (One) or (Two) holds with (q, N, η, η^+) . But $N_1, N_2 \in \mathcal{N}^q \cap N$ and $\omega_1 \cap N_1 = \omega_1 \cap N_2 = \eta$. Hence $\{M \in \mathcal{N}^p \cap N \mid \omega_1 \cap M = \eta\} = \{N_1, N_2\} = \{M \in \mathcal{N}^q \cap N \mid \omega_1 \cap M = \eta\}$ $M=n$ }.

□

Lemma. (Dense) (1) For any $p \in P_{\text{MOR}}$ and any $\eta \leq \omega_1$, there exists $q \leq p$ in P_{MOR} s.t. there exists $\delta \in \text{dom}(f^q)$ with $\eta < \delta$.

(2) For any $p \in P_{MOR}$, any two consecutive $\delta < \delta^+$ in dom (f^{\prime}) , and any $M \in \mathcal{N}^{\prime}$ with $\omega_1 \cap M =$ δ^+ , and any $x \in M$, there exists (q, N) s.t. $q \leq p$ in P_{MOR} and $N \in \mathcal{N}^q$ with $x \in N$.

Proof. For (1), we use the assumption $\bigcup \mathcal{N}^p \in \mathcal{N}^p$ to extend. We outline (2). Since $M \in$ lim(C), we have $M = \bigcup (C \cap M)$. Since $x, f^{\rho}(\delta), \mathcal{N}^{\rho} \cap M \in M$, there exists $N \in C \cap M$ s.t. *x*, *f*^{*p*}(δ), $\mathcal{N}^p \cap M \in \mathbb{N}$. Let $q = (f^q, \mathcal{N}^q)$, where f^q and f^p are the same except $f^q(\delta) = f^p(\delta) \cup$ $\{\omega_1 \cap N\}$ and \mathcal{N}^q is formed by considering appropriate copies of *N* as follows.

$$
\mathcal{N}^q = \{ \phi_{MM}(N) \mid M' \in \mathcal{N}^p, \omega_1 \cap M' = \omega_1 \cap M \} \cup \mathcal{N}^p.
$$

Then this (*q,N*) works.

Lemma. (Proper) Let λ be a sufficiently large regular cardinal. Let *M* be a countable

elementary substructure of H_λ with, say, C , $P_{\text{MOR}} \in M$. In particular, we have $H_{\omega_2} \cap M \in \text{lim}(C)$. Let $q \in P_{MOR}$ s.t. $H_{\omega_2} \cap M \in \mathcal{N}^q$ and $\omega_1 \cap M \in \text{dom}(f^q)$. Then *q* is $(P_{MOR} M)$ -generic.

Proof. We first observe that $H_{\omega_2} \cap M = \bigcup (C \cap (H_{\omega_2} \cap M))$. Let $x \in H_{\omega_2} \cap M$. It suffices to find *N*∈*C*∩ *M* = *C*∩ (H_{ω_2} ∩ *M*) with *x*∈*N*. Since

$$
C, x \in M \prec H_{\lambda} \models \text{``}\exists \text{ } N \in C \text{ } x \in N\text{''},
$$

we have $N \in \mathbb{C} \cap M$ with $x \in N$.

Let us simply denote *P* for P_{MOR} . Let *D* be predense in *P* with $D \in M$. We want to show $D \cap$ *M* is predense below *q*. We present a typical argument assuming that there exists $d \in D$ with $q \leq d$ in *P*. It suffices to argue similarly dense below *q*. We first fix *M*-copies (q', d', M') of (q,d,M_1) , where $M_1 = H_{\omega_2} \cap M$, as follows. Since

$$
H_{\lambda} \models \text{``}\exists \ (q', d', M') \text{ s.t. } q' \leq d' \text{ in } P, d' \in D, M' \in \mathcal{N}^{q'}, \ (f^q \restriction M_1) = f^{q'} \restriction M', \ (\mathcal{N}^q \cap M_1) = \mathcal{N}^{q'} \cap M'''
$$

and

$$
P, D, f^q \lceil M_1, \, \mathcal{N}^q \cap M_1 \in M \prec H_\lambda,
$$

we have $(q', d', M') \in M$ as described. We then form a commom extension *r* of q' and q in P_{MOR} as follows. Let $f' = f^{q'} \cup f^q$ and consider appropriate copies of $\mathcal{N}^{q'}$ to form the least finite symmetric

$$
\mathcal{N}^{\prime} = \{ \phi_{M_1M_2}(K) \mid K \in \mathcal{N}^{q'}, M_2 \in \mathcal{N}^{q}, \omega_1 \cap M_2 = \omega_1 \cap M_1 \} \cup \mathcal{N}^{q}.
$$

Note that if $K \in \text{lim}(C) \cap M_1$, then $\phi_{M_1 M_2}(K) \in \text{lim}(C)$. Notice that $r \leq d' \in D \cap M$.

To form copies, we also have

Lemma. Let λ be a sufficiently large regular cardinal. Let M_1, M_2, M_3 be three countable elementary substructures of H_{λ} s.t. *C*, $P_{MOR} \in M_1 \cap M_2$, $\{M_1, M_2\} \in M_3$, and there exists an isomorphism $\phi : M_1 \longrightarrow M_2$ that satisfies $\phi(x) = x$ for all $x \in M_1 \cap M_2$. Furthermore,

$$
\Delta := (\omega_2 \cap M_1) \cap (\omega_2 \cap M_2) \langle (\omega_2 \cap M_1) \setminus \Delta \langle (\omega_2 \cap M_2) \setminus \Delta \neq \emptyset.
$$

Let $p ∈ P_{MOR} ∩ M₁$ and let $p' = φ(p)$. Then $p' = (f^p, φ(N^p)) ∈ P_{MOR} ∩ M₂$ and p and p have a common extension *r* in P_{MOR} s.t. $H_{\omega_2} \cap M_1$, $H_{\omega_2} \cap M_2 \in \mathcal{N}^r$ and $\bigcup \mathcal{N}^r = H_{\omega_2} \cap M_3$.

□

Proof . Routine.

Lemma. (CH) P_{MOR} has the ω_2 -cc.

Proof. Let $\langle p_i | i \langle \omega_2 \rangle$ be an indexed family of conditions of P_{MOR} . We want to find $i < j$ s.t. p_i and p_j have a common extension r in P_{MOR} . To this end, let λ be a sufficiently large regular cardinal. For each $i<\omega_2$, let us fix a countable elementary substructure M_i of H_λ with C, P_{MOR} $p_i{\in}M_i$. By CH, we may assume that $\langle\,M_i\,|\,i{<}\omega_2\rangle$ forms a Δ -system s.t. for any $i{<}j{<}\omega_2, M_i$ and *M_i* are isomorphic by the map $\phi_{ii}: M_i \longrightarrow M_i$ s.t. $\phi_{ii}(p_i) = p_i$ and $\phi_{ii}(x) = x$ for all $x \in M_i \cap$ *M_i*. Furthermore,

$$
\Delta:=(\omega_2\cap M_i)\cap (\omega_2\cap M_j)\langle (\omega_2\cap M_i)\setminus \Delta\langle (\omega_2\cap M_j)\setminus \Delta\neq\emptyset.
$$

Fix any two $i < j < \omega_2$. Then p_i and p_j are compatible in P_{MOR} .

Lemma. Let *G* be P_{MOR} generic over the ground model *V*. In the generic extension $V[G]$, we form \dot{C} , \dot{S}_{δ} (for each $\delta \in \dot{C}$), \dot{D} , and \dot{N} as follows.

$$
\dot{C} = \bigcup \{ \text{dom}(f^{\hat{p}}) \mid \hat{p} \in G \},
$$
\n
$$
\dot{S}_{\hat{\delta}} = \bigcup \{ f^{\hat{p}}(\delta) \mid \delta \in \text{dom}(f^{\hat{p}}), \hat{p} \in G \},
$$
\n
$$
\dot{D} = \dot{C} \cup \bigcup \{ \dot{S}_{\hat{\delta}} \mid \delta \in \dot{C} \},
$$
\n
$$
\dot{\mathcal{N}} = \bigcup \{ \mathcal{N}^{\hat{p}} \mid \hat{p} \in G \}.
$$

Then

- \dot{C} is a closed and cofinal subset of ω_1 .
- For any two consecutive $\delta \leq \delta^+$ elements of \dot{C} , \dot{S}_δ is a subset of the open interval (δ , δ^{\dagger} , cofinal below δ^{\dagger} , and is of order-type ω .
- *D* is a closed and cofinal subset of ω_1 s.t. the least element of *D* is c_0 , where c_0 is the least element of \hat{C} , the set of accumulation points of \hat{D} is $\hat{C} \setminus \{c_0\}$, and the set of successor points of \dot{D} is $\bigcup {\{\dot{S}_\delta\}} \delta \in \dot{C}$.
- $\dot{D} = \{\omega_1 \cap N \mid N \in \dot{N}\}.$
- zero $(N) = {N \in N \mid \omega_1 \cap N}$ is the least element of \dot{D} .
- suc(\dot{N}) = { $N \in \dot{N} \mid \omega_1 \cap N$ is a successor point of \dot{D} }.
- $\lim_{\Delta} (\hat{N}) = \{ N \in \hat{N} \mid \omega_1 \cap N \}$ is an accumulation point of $\hat{D} \}$.
- $\dot{\mathcal{N}}$ gets partitioned into the three cells zero ($\dot{\mathcal{N}}$), suc ($\dot{\mathcal{N}}$), and lim ($\dot{\mathcal{N}}$).
- $\dot{\mathcal{N}}$ is morass-like symmetric.

Proof. We outline on zero (\dot{N}), suc(\dot{N}), and $\lim (\dot{N})$.

• zero $(\dot{N}) = {N \in \dot{N} \mid \omega_1 \cap N \equiv c_0}$.

Proof. \subseteq : Let *N*∈zero(\hat{N}). Then $\hat{N} \cap N = \emptyset$. We know that $\omega_1 \cap N \in \hat{D}$. Suppose $\omega_1 \cap \Omega$ *N*> c_0 . By (up) and (down), or simply by (sliding), there must be *K*∈*N* s.t. *K*∈*N* ∩ *N*. This is a contradiction.

 \supseteq : We know c_0 is the least element of \dot{D} . Hence $\dot{\mathcal{N}} \cap N = \emptyset$.

•
$$
\operatorname{suc}(\dot{\mathcal{N}}) = \{ N \in \dot{\mathcal{N}} \mid \exists \delta \in \dot{C} \omega_1 \cap N \in \dot{S}_\delta \}.
$$

Proof. \subseteq : Let $N \in \text{succ}(\dot{N})$. Then

$$
\omega_1 \cap N \in \dot{D} = \dot{C} \cup \bigcup \{\dot{S}_{\delta} | \delta \in \dot{C}\} = \{\omega_1 \cap M | M \in \dot{N}\}.
$$

□

Let $\omega_1 \cap N \in \dot{C}$. Since $\dot{N} \cap N \neq \emptyset$, we have $\omega_1 \cap N > c_0$. We know the set of accumulation points $\lim_{b \to b}$ of \dot{D} is $\dot{C} \setminus \{c_0\}$. Hence $\omega_1 \cap N \in \lim_{b \to b}$. Hence there exist no $N_1, N_2 \in \dot{N} \cap N$ s.t. $\omega_1 \cap$ $N_1 = \omega_1 \cap N_2$ and

$$
\dot{\mathcal{N}} \cap N = \{N_1, N_2\} \cup (\dot{\mathcal{N}} \cap N_1) \cup (\dot{\mathcal{N}} \cap N_2).
$$

 \supseteq : Let *N*∈*N* and *δ* ∈*C* s.t ω₁∩ *N*∈*S*_δ. Let $η < η$ ⁺ be two consecutive members of {δ} $\bigcup \dot{S}_\delta$ with $\eta^+ = \omega_1 \cap N$. We have two cases.

Case. There exists a unique $N_0 \in \mathcal{N} \cap N$ s.t. $\omega_1 \cap N_0 = \eta$. Then $\mathcal{N} \cap N = \{N_0\} \cup (\mathcal{N} \cap N_0)$ N_0).

Case. There exist N_1 , $N_2 \in \mathcal{N} \cap N$ s.t. $\omega_1 \cap N_1 = \omega_1 \cap N_2 = \eta$ and

$$
\Delta := (\omega_2 \cap N_1) \cap (\omega_2 \cap N_2) < (\omega_2 \cap N_1) \setminus \Delta < (\omega_2 \cap N_2) \setminus \Delta \neq \emptyset.
$$

Then

$$
\dot{\mathcal{N}} \cap N = \{N_1, N_2\} \cup (\dot{\mathcal{N}} \cap N_1) \cup (\dot{\mathcal{N}} \cap N_2).
$$

Hence $N \in \text{succ}(\dot{N})$.

• $\lim_{N \to \infty}$ $\langle N \rangle = \{ N \in \mathcal{N} \mid \omega_1 \cap N \in \lim_{N \to \infty} (D) \}.$ *Proof*. \subseteq : Let *N*∈lim($\dot{\mathcal{N}}$). Since $\bigcup (\dot{\mathcal{N}} \cap N) = N$, we have $\omega_1 \cap N \in \text{lim}(\dot{D})$. We know $\lim (\dot{D}) = \dot{C} \setminus \{c_0\}.$

 \supseteq : Let *N*∈ \dot{N} with $ω_1 ∩ N \in \lim(\dot{D})$. We have two cases.

Case. $(\omega_1 \cap N) \cap C$ is cofinal below $\omega_1 \cap N$. We know

$$
\omega_1 \cap N \in C = \bigcup \{ \text{dom}(f^p) \mid p \in G \}.
$$

Hence for any $x \in N$, there exists $M \in \mathcal{N} \cap N$ with $x \in M$. Hence

$$
N = \bigcup (\mathcal{N} \cap N).
$$

Case. $(\omega_1 \cap N) \cap C$ is bounded below $\omega_1 \cap N$. Since $\omega_1 \cap N \in \text{lim}(D) = C \setminus \{c_0\}$, we have $\delta \leq \delta^*$ s.t. δ is the largest element of $(\omega_1 \cap N) \cap C$, $\delta \leq \delta^*$ are two consecutive elements of \dot{C} s.t. $\omega_1 \cap N = \delta^+$. Then \dot{S}_{δ} is cofinal below $\omega_1 \cap N$. For any $x \in N$, there exists $M \in \dot{N} \cap N$ *N* with *x*∈*M* . Hence

$$
N = \bigcup (\mathcal{N} \cap N).
$$

□

Lemma. For N_3 , $N_2 \in \mathcal{N}$, the following (1) and (2) are equivalent.

- (1) $\omega_2 \cap N_3$ is a proper subset of $\omega_2 \cap N_2$.
- (2) There exists $N_4 \in \mathcal{N} \cap N_2$ s.t. $\omega_2 \cap N_3 = \omega_2 \cap N_4$.

Proof . (1) implies (2) : By taking intersections, we have $\omega_1 \cap N_3 \leq \omega_1 \cap N_2$. If $\omega_1 \cap N_3$

□

 $\omega_1 \cap N_2$, then by (iso), we have $\phi_{N_3N_2}[\omega_2 \cap N_3] = \omega_2 \cap N_2$. But $\phi_{N_3N_2}$ fixes $N_3 \cap N_2$ pointwise. Hence $\phi_{N_3N_2}[\omega_2 \cap N_3] = \omega_2 \cap N_3$. Then $\omega_2 \cap N_2 = \omega_2 \cap N_3$. This is absurd. Hence $\omega_1 \cap$ *N*₃ $\lt \omega_1$ ∩ *N*₂. Then by (up), there exists *N*₁∈ $\dot{\mathcal{N}}$ s.t. *N*₃∈ *N*₁ and ω_1 ∩ *N*₁ = ω_1 ∩ *N*₂. Let *N*₄ = $\phi_{N_1N_2}(N_3)$. Then by (down), $N_4 \in \mathcal{N} \cap N_2$ and $\omega_2 \cap N_4 = \phi_{N_1N_2}[\omega_2 \cap N_3] = \omega_2 \cap N_3$.

Corollary. Let $\mathcal{A} = \{\omega_2 \cap N \mid N \in \mathcal{N}\}\$. Then \mathcal{A} is a simplified $(\omega_1, 1)$ -morass in the sense of definition 2.6 in [V1].

Proof . We list facts related to each item.

(well founded) If $\omega_2 \cap N$ is a proper subset of $\omega_2 \cap M$, then $\omega_1 \cap N \leq \omega_1 \cap M$.

(homogeneous) Let $N \in \mathcal{N}$ and $\mathcal{A} \left[(\omega_2 \cap N) = \{ Z \in \mathcal{A} \mid Z \text{ is a proper subset of } \omega_2 \cap N \} \right]$. Then $\mathcal{A}(\omega_2 \cap N) = \{ \omega_2 \cap M \mid M \in \mathcal{N} \cap N \}$ holds. Notice $\omega_2 \cap N$, $\omega_2 \cap M$ are of the same rank iff $\omega_1 \cap N = \omega_1 \cap M$.

(locally small) $\dot{\mathcal{N}} \cap N$ is countable.

(directed) If $N_1, N_2 \in \mathcal{N}$, then by (cof), there exists $N \in \mathcal{N}$ with $N_1, N_2 \in \mathcal{N}$. This we dubbed (dir). In particular, $\omega_2 \cap N_1$, $\omega_2 \cap N_2$ are proper subsets of $\omega_2 \cap N$.

(locally almost directed): If $N \in \text{zero}(\mathcal{N})$, then $\mathcal{A}(\omega_2 \cap N)$ is vacuously directed. If $N \in$ suc(\hat{N}), then either $\hat{N} \cap N$ satisfies (One) and so $\hat{A}(\omega_2 \cap N)$ is directed, or (Two) and so has a maximal split end. If $N \in \lim_{M \to \infty} (\mathcal{N})$, then $\mathcal{A}(\omega_2 \cap N)$ is directed.

(cover): By (cof), we have $\omega_2 = \bigcup \mathcal{A}$.

References

 [AM] D. Aspero, M. Mota, Forcing consequences of PFA together with the continuum large, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6103-6129.

 [M1] T. Miyamoto, Matrices of isomorphic models and morass-like structures, RIMS Kokyuroku (2014), no. 1895, 79-102. https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/195849/1/1895-09.pdf

[M2] —, Forcing continuous epsilon-chains with finite side conditions, RIMS Kokyuroku (2020), no. 2164, 142-148.

https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/2164-12.pdf

[V1] D. Velleman, Simplified morasses, J. Symbolic Logic 49 (1984), no. 1, 257-271.

[V2] ---, Simplified gap-2 morasses. Ann. Pure Appl. Logic 34 (1987), no. 2, 171-208.

 miyamoto@nanzan-u.ac.jp Mathematics Nanzan University 18 Yamazato-cho, Showa-ku, Nagoya 466-8673 Japan