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In q multi-sample models, we consider multiple comparison tests for all-pairwise differences

of means. Let H(p) be the family of null hypothesis among k(p) means for p = 1, . . . , q. The

family H(1) ≻ . . . ≻ H(q) has the order of priority. This paper describes procedures for

performing multiple comparison tests at level α based on serial gatekeeping methods. In the

p-th stage, a test procedure under unrestricted means or a test procedure under order restricted

means is used. The power of the proposed tests is much superior to the serial gatekeeping

methods based on Bonferroni tests which are proposed by Maurer et al. (1995).
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1 Introduction

The homoscedastic k sample model is expressed as

Xij = µi + eij (j = 1, . . . , ni; i = 1, . . . , k),

where eij ’s are independent and identically distributed normal with mean 0 and variance σ2

unknown. Then Tukey (1953) and Kramer (1953) proposed single-step procedures as multiple
comparison tests of level α for all-pairwise comparisons of

{
the null hypothesis H(i,i′) : µi =

µi′ vs. the alternative HA
(i,i′) : µi ̸= µi′

∣∣ (i, i′) ∈ Uk

}
, where Uk := {(i, i′) | 1 ≤ i < i′ ≤ k}.

As multi-step procedures, Ryan (1960), Einot and Gabriel (1975), and Welsch (1977) gave the
REGW (Ryan–Einot–Gabriel–Welsch) methods. The REGW test procedures are included in the
SPSS system. Shiraishi (2011) proposed closed testing procedures which are more powerful than
the REGW tests. Shiraishi and Sugiura (2018) showed that the closed testing procedures are more
powerful than the Tukey-Kramer method. When the simple order restrictions

µ1 ≤ µ2 ≤ . . . ≤ µk (1.1)

is satisfied, Hayter (1990) proposed single-step simultaneous tests for {the null hypothesis H(i,i′)

vs. the alternative HOA
(i,i′) : µi < µi′

∣∣ (i, i′) ∈ Uk} under the equal sample sizes n1 = . . . = nk.

Shiraishi (2014) proposed closed testing procedures and showed that (i) the proposed multi-step
procedures are more powerful than the single-step procedure of Hayter (1990), and (ii) confidence
regions induced by the multi-step procedures are equivalent to simultaneous confidence intervals.
Under unequal sample sizes, Shiraishi and Matsuda (2016) proposed closed testing procedures
based on Bartholomew’s tests.

Gatekeeping procedures became to be used in recent years as a convenient way to handle
relationships between multiple hierarchical objectives. To solve questions concerning different
objectives, null hypotheses are divided into q ordered families, F (1) ≻ . . . ≻ F (q). Westfall and
Krishen (2001) proposed the serial gatekeeping procedures in which the hypotheses in F (p+1) are
tested if and only if all hypotheses in F (p) are rejected (1 ≤ p ≤ q − 1). The individual test
procedures are based on Bonferroni tests.

In this paper, we consider q multi-sample models. For the p-th multi-sample model such that

1 ≤ p ≤ q, (X
(p)
i1 , . . . , X

(p)

in
(p)
i

) is a random sample of size n
(p)
i from the i-th normal population with

mean µ
(p)
i and variance σ2

(p) (i = 1, . . . , k(p)), that is, P (X
(p)
ij ≤ x) = Φ((x − µ

(p)
i )/σ(p)), where

Φ(x) is a standard normal distribution function. Futhermore, for fixed p, X
(p)
ij ’s are independent.
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We need not assume that X(1), . . . ,X(q) are independent, where X(p) :=

(
X

(p)
11 , . . . , X

(p)

k(p)n
(p)

k(p)

)
.

Let

H(p) :=

{
H

(p)
ii′ : µ

(p)
i = µ

(p)
i′

∣∣∣∣ (i, i′) ∈ Uk(p)

}
(1.2)

be the family of null hypothesis among k(p) means for p = 1, . . . , q, where

Uk(p) := {(i, i′) | 1 ≤ i < i′ ≤ k(p)}. (1.3)

The family H(1), . . . ,H(q) has the order of priority.

H(1) ≻ . . . ≻ H(q). (1.4)

This paper describes procedures for performing multiple comparison tests at level α based on
serial gatekeeping methods. In the p-th stage, a test procedure under unrestricted means or a
test procedure under order restricted means is used. The proposed hybrid procedures are the
parametric methods assuming the normal distribution. The methods of Tukey (1953), Kramer
(1953), Hayter (1990), Shiraishi (2011, 2014), and Shiraishi and Matsuda (2016) are used in the
hybrid gatekeeping procedures. The power of the proposed tests is much superior to the serial
gatekeeping methods based on Bonferroni tests which are usually used.

2 Multiple comparison test procedures under unrestricted
means in the p-th multi-sample model

The unbiased estimators for µ
(p)
i , overall mean ν(p) =

∑k(p)

i=1 n
(p)
i µ

(p)
i /n(p), and σ2

(p), respectively,

are given by µ̂
(p)
i = X̄

(p)
i· , ν̂(p) = X̄

(p)
·· , and

V
(p)
E =

1

m(p)

k(p)∑
i=1

n
(p)
i∑

j=1

(X
(p)
ij − X̄

(p)
i· )2 (2.1)

where X̄
(p)
i· := (1/n

(p)
i )

∑n
(p)
i

j=1 X
(p)
ij , X̄

(p)
·· := (1/n(p))

∑k(p)

i=1

∑n
(p)
i

j=1 X
(p)
ij ,

m(p) := n(p) − k(p), and n(p) :=
k(p)∑
i=1

n
(p)
i . (2.2)

The ratio F
(p)
t :=

∑k(p)

i=1 n
(p)
i (X̄

(p)
i· − X̄

(p)
·· )2/{(k(p) − 1)V

(p)
E } is used to test the null hypothesis of

no treatment effects,

H
(p)
0 : µ

(p)
1 = . . . = µ

(p)

k(p) , (2.3)

as follows. We reject H
(p)
0 at level α if F

(p)
t > F k(p)−1

m(p) (α), where F k(p)−1
m(p) (α) denotes the upper

100α% point of F -distribution with degrees of freedom (k(p) − 1,m(p)).
For specified i, i′ such that 1 ≤ i < i′ ≤ k(p), if we are interested in testing the null hypothesis

H
(p)
(i,i′) : µ

(p)
i = µ

(p)
i′ vs. the alternative H

(p)A
(i,i′) : µ

(p)
i ̸= µ

(p)
i′ , we can use the two-sided two-sample

t-test. In this section, we consider test procedures for all-pairwise comparisons of{
the null hypothesis H

(p)
(i,i′) vs. the alternative H

(p)A
(i,i′)

∣∣ (i, i′) ∈ Uk(p)

}
, (2.4)

where Uk(p) is defined by (1.3).
Tukey (1953) and Kramer (1956) proposed single-step procedures as multiple comparison tests

of level α. We introduce two distribution functions of TA(t|k(p),m(p)) and TA∗(t|k(p),m(p),λ
(p)
n ).

TA(t|k(p),m(p)) := k(p)
∫ ∞

0

[ ∫ ∞

−∞
{Φ(x)− Φ(x−

√
2 · ts)}k

(p)−1dΦ(x)
]
g(s|m(p))ds, (2.5)
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TA∗(t|k(p),m(p),λ(p)
n ) :=

k(p)∑
j=1

∫ ∞

0

[∫ ∞

−∞

k(p)∏
i=1
i̸=j

{
Φ

√√√√λ
(p)
ni

λ
(p)
nj

· x



− Φ

√√√√λ
(p)
ni

λ
(p)
nj

· x−

√√√√λ
(p)
ni + λ

(p)
nj

λ
(p)
nj

· ts

}dΦ(x)]g(s|m(p))ds.

where
λ(p)
n := (λ

(p)
n1 , . . . , λ

(p)

nk(p)), λ
(p)
ni := n

(p)
i /n(p) (i = 1, . . . , k(p)), (2.6)

g(s|m(p)) :=
(m(p))m

(p)/2

Γ (m(p)/2)2(m(p)/2−1)
sm

(p)−1 exp(−m(p)s2/2), (2.7)

and m(p) is defined in (2.2).
TA(t/

√
2|p) is referred to as studentized range distribution. We put

T
(p)
i′i :=

X̄
(p)
i′· − X̄

(p)
i·√

V
(p)
E

(
1

n
(p)
i

+ 1

n
(p)

i′

) ((i, i′) ∈ Uk(p)). (2.8)

Then we get, for t > 0,

TA(t|k(p),m(p)) ≤ P(p)0

(
max

(i,i′)∈U
k(p)

|T (p)
i′i | ≤ t

)
≤ TA∗(t|k(p),m(p),λ(p)

n ) (2.9)

holds, where P(p)0(·) stands for probability measure under the null hypothesis H
(p)
0 . When n

(p)
1 =

. . . = n
(p)

k(p) is satisfied, both of the inequalities of (2.9) become an equality.
The left hand side of the inequality (2.9) is derived from main theorem of Hayter (1984).

The right hand side of the inequality (2.9) is given by Shiraishi (2006). For a given α such that
0 < α < 1, we put

ta(k(p),m(p);α) := a solution of t satisfying the equation TA(t|k(p),m(p)) = 1− α. (2.10)

[2.1] Single-step tests based on t-statistics

The Tukey-Kramer simultaneous test of level α for the null hypotheses {H(p)
(i,i′)| (i, i

′) ∈ Uk(p)}
consists in rejecting H

(p)
(i,i′) for (i, i′) ∈ Uk(p) such that |T (p)

i′i | > ta(k(p),m(p);α). From the left

inequality of (2.9), we find that the Tukey-Kramer simultaneous test is conservative. Under

the condition of max1≤i≤k(p) n
(p)
i /min1≤i≤k(p) n

(p)
i ≤ 2, Shiraishi (2006) found that the values of

TA∗(t|k(p),m(p),λ
(p)
n )−TA(t|k(p),m(p)) is nearly equal to 0 for various values of t from numerical

integration. Therefore the conservativeness of the Tukey-Kramer method is small.
The closure of H(p) is given by

H(p) =

{∧
v∈V

H(p)
v

∣∣ ∅ ⊊ V ⊂ Uk(p)

}
,

where
∧

denotes the conjunction symbol (Refer to Enderton (2001)). Then, we get∧
v∈V

H(p)
v : for any (i, i′) ∈ V, µ

(p)
i = µ

(p)
i′ holds. (2.11)

For an integer J (p) and disjoint sets I
(p)
1 , . . . , I

(p)

J(p) ⊂ {1, . . . , k(p)}, we define the null hypothesis

H(p)(I
(p)
1 , . . . , I

(p)

J(p)) by

H(p)(I
(p)
1 , . . . , I

(p)

J(p)) : for any integer j such that 1 ≤ j ≤ J (p)

and for any i, i′ ∈ I
(p)
j , µ

(p)
i = µ

(p)
i′ holds. (2.12)
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From (2.11) and (2.12), for any nonempty V ⊂ Uk(p) , there exist an integer J (p) and disjoint sets

I
(p)
1 , . . . , I

(p)

J(p) such that ∧
v∈V

H(p)
v = H(p)(I

(p)
1 , . . . , I

(p)

J(p)) (2.13)

and #(I
(p)
j ) ≥ 2 (j = 1, . . . , J (p)), where #(A) stands for the cardinal number of set A. For

H(p)(I
(p)
1 , . . . , I

(p)

J(p)) of (2.13), we set

M (p) := M (p)(I
(p)
1 , . . . , I

(p)

J(p)) =
J(p)∑
j=1

ℓ
(p)
j , ℓ

(p)
j := #(I

(p)
j ). (2.14)

Let us put

T (p)(I
(p)
j ) := max

i<i′, i,i′∈I
(p)
j

∣∣∣T (p)
i′i

∣∣∣ (j = 1, . . . , J (p)).

Then, we propose the stepwise procedure [2.2].

[2.2] Stepwise procedure based on t-statistics

For ℓ(p) = ℓ
(p)
1 , . . . , ℓ

(p)

J(p) , we define α(M (p), ℓ(p)) by

α(M (p), ℓ(p)) := 1− (1− α)ℓ
(p)/M(p)

. (2.15)

Corresponding to (2.5), we put

TA(t|ℓ(p),m(p)) := ℓ(p)
∫ ∞

0

[ ∫ ∞

−∞
{Φ(x)− Φ(x−

√
2 · ts)}ℓ

(p)−1dΦ(x)
]
g(s|m(p))ds. (2.16)

By obeying the notation ta(k(p),m(p);α), we get

TA(ta(ℓ(p),m(p);α(M (p), ℓ(p)))|ℓ(p),m(p)) = 1− α(M (p), ℓ(p)), (2.17)

that is, ta(ℓ(p),m(p);α(M (p), ℓ(p))) is an upper 100α(M (p), ℓ(p))% point of the distribution TA(t|ℓ(p),m(p)).

(a) J (p) ≥ 2

Whenever ta
(
ℓ
(p)
j ,m(p);α(M (p), ℓ

(p)
j )
)
< T (p)(I

(p)
j ) holds for an integer j such that 1 ≤ j ≤

J (p), we reject the hypothesis
∧

v∈V H
(p)
v .

(b) J (p) = 1 (M (p) = ℓ
(p)
1 )

Whenever ta
(
M (p),m(p);α

)
< T (p)(I

(p)
1 ) holds, we reject the hypothesis

∧
v∈V H

(p)
v .

By using the methods of (a) and (b), when
∧

v∈V H
(p)
v is rejected for any V such that (i, i′) ∈

V ⊂ Uk(p) , the null hypothesis H
(p)
(i,i′) is rejected as a multiple comparison test.

As a closed testing procedure under assuming normality for k(p)-sample model, the REGW
(Ryan–Einot–Gabriel–Welsch) method is utilized. The REGWmethod is also stated in Hsu (1996).
In order to introduce the REGW method, we define the hypothesis H(p)(I(p)) by

H(p)(I(p)) : µ
(p)
i = µ

(p)
i′ for i, i′ ∈ I(p)

and we put ı(p) = #(I(p)), where I(p) (I(p) ⊂ {1, . . . , k(p)}) and #(I(p)) ≥ 2. Suppose k(p) ≥ 4.
We define α∗(ı(p)) by

α∗(ı(p)) =

{
1− (1− α)ı

(p)/k(p)

(2 ≤ ı(p) ≤ k(p) − 2)
α (ı = k(p) − 1, k(p)).

(2.18)
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[2.3] REGW method

If ta
(
ı(p),m(p);α∗(ı(p))

)
< T (p)(I(p)) for any I(p) such that i, i′ ∈ I(p), H

(p)
(i,i′) is rejected.

Suppose ℓ
(p)
j = ı(p) = ℓ(p). Then, since

1− (1− α)ℓ
(p)/M(p)

≥ 1− (1− α)ℓ
(p)/k(p)

,

in testing the null hypothesis
∧

v∈V H
(p)
v , the rejection region for the closed testing procedure [2.2]

includes the one for the closed testing procedure [2.3]. Therefore, the closed testing procedure [2.2]
is more powerful than the closed testing procedure [2.3].

[2.4] Stepwise procedure based on F -statistics
Let us put

S(p)(I
(p)
j ) :=

∑
i∈I

(p)
j

n
(p)
i

(
X̄

(p)
i· − X̄

(p)

I
(p)
j

)2

/{(ℓ(p)j − 1)V
(p)
E } (j = 1, . . . , J (p)), (2.19)

where I
(p)
j is defined in (2.13), ℓ

(p)
j is defined in (2.14), and

X̄
(p)

I
(p)
j

:=
∑

i∈I
(p)
j

n
(p)
i X̄

(p)
i· /

∑
i∈I

(p)
j

n
(p)
i . In the procedure [2.2], replace

ta
(
ℓ
(p)
j ,m(p);α(M (p), ℓ

(p)
j )
)
< T (p)(I

(p)
j ) and ta

(
M (p),m(p);α

)
< T (p)(I

(p)
1 ) with

F
ℓ
(p)
j −1

m(p)

(
α(M (p), ℓ

(p)
j )
)
< S(p)(I

(p)
j ) and FM(p)−1

m(p) (α) < S(I
(p)
1 ), respectively. Then, this procedure

also becomes a closed test.

3 Multiple comparison test procedures under order restricted
means in the p-th multi-sample model

When the simple order restrictions

µ
(p)
1 ≤ µ

(p)
2 ≤ . . . ≤ µ

(p)

k(p) (3.1)

is satisfied, we consider the null hypothesis H
(p)
0 vs. the alternative H(p)A : µ

(p)
1 ≤ µ

(p)
2 ≤ . . . ≤

µ
(p)

k(p) with at least one strict inequality, which is equivalent toH
(p)
0 : µ

(p)
1 = µ

(p)

k(p) vs. H
(p)A : µ

(p)
1 <

µ
(p)

k(p) , where H
(p)
0 is defined by (2.3). We define {µ̂(p)o

i | i = 1, . . . , k(p)} by {ui| i = 1, . . . , k(p)}

which minimize
∑k(p)

i=1 λ
(p)
ni

(
ui − X̄

(p)
i·

)2
under simple order restrictions u1 ≤ u2 ≤ . . . ≤ uk(p) , that

is.,
k(p)∑
i=1

λ
(p)
ni

(
µ̂
(p)o
i − X̄

(p)
i·

)2
= min

u1≤...≤u
k(p)

k(p)∑
i=1

λ
(p)
ni

(
ui − X̄

(p)
i·

)2
.

µ̂
(p)o
1 , . . . , µ̂

(p)o

k(p) are computed by using the pool-adjacent-violators algorithm stated in Robertson
et al. (1988). Accordingly, we find

µ̃
(p)o
i = max

1≤a≤i
min

i≤b≤k(p)

∑b
j=a λ

(p)
nj X̄

(p)
j·∑b

j=a λ
(p)
nj

= max
1≤a≤i

min
i≤b≤k(p)

∑b
j=a n

(p)
j X̄

(p)
j·∑b

j=a n
(p)
j

. (3.2)

We put

χ̄
2(p)

k(p) :=
1

σ2
(p)

k(p)∑
i=1

n
(p)
i

µ̂
(p)o
i −

k(p)∑
j=1

λ
(p)
nj X̄

(p)
j·

2

. (3.3)
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We define ν̃
(p)o
1 , . . . , ν̃

(p)o

k(p) by

k(p)∑
i=1

λ
(p)
ni

(
ν̃
(p)o
i − Y

(p)
i

)2
= min

u1≤...≤u
k(p)

k(p)∑
i=1

λ
(p)
ni

(
ui − Y

(p)
i

)2
,

where Y
(p)
1 , . . . , Y

(p)

k(p) are independent and Y
(p)
i ∼ N(0, 1/λ

(p)
ni ) (i = 1, . . . , k(p)). Let P (L, k(p);λ

(p)
n )

be the probability that ν̃
(p)o
1 , . . . , ν̃

(p)o

k(p) takes exactly L distinct values, where λ
(p)
n is defined by (2.6).

Then, for positive constant c, P (L, k(p); cλ
(p)
n ) = P (L, k(p);λ

(p)
n ) holds. Futhermore, from Theorem

2.3.1 of Robertson et al. (1988), we get

P(p)0(χ̄
2(p)

k(p) ≥ t) =

k(p)∑
L=2

P (L, k(p);λ(p)
n )P

(
χ2
L−1 ≥ t

)
(t > 0), (3.4)

where χ2
L−1 is a chi-square variable with L − 1 degrees of freedom. The recurrence formula of

computing P (L, k(p);λ
(p)
n ) is written in Robertson et al. (1988). The fundamental algorithm of

P (L, k(p);λ
(p)
n ) based on sinc integral is stated in section 7.4 of Shiraishi et al. (2019).

Since P (L, k(p);λ
(p)
n ) depends on L and k(p) for

λ
(p)
n1 = . . . = λ

(p)

nk(p) = 1/k(p), (3.5)

we simply write P (L, k(p)) instead of P (L, k(p);λ
(p)
n ). Barlow et al. (1972) offers the following

recurrence formula.

P (1, k(p)) =
1

k(p)
,

P (L, k(p)) =
1

k(p)

{
(k(p) − 1)P (L, k(p) − 1) + P (L− 1, k(p) − 1)

}
, (2 ≤ L ≤ k(p) − 1)

P (k(p), k(p)) =
1

k(p)!
.

In χ̄
2(p)

k(p) defined by (3.3), replace σ2
(p) with the estimator V

(p)
E . Then the subsequent statistic is

denoted by

B̄2
(p) :=

∑k(p)

i=1 n
(p)
i (µ̃

(p)o
i − X̄

(p)
·· )2

V
(p)
E

=
χ̄
2(p)

k(p)

V
(p)
E /σ2

(p)

. (3.6)

Since χ̄
2(p)

k(p) and V
(p)
E are independent, from (3.4), (3.6) and the relationship with m(p)V

(p)
E /σ2

(p) ∼
χ2
m(p) , we find, for t > 0,

P(p)0(B̄
2
(p) ≥ t) =

k(p)∑
L=2

P (L, k(p);λ(p)
n )P

(
(L− 1)FL−1

m(p) ≥ t
)
, (3.7)

where FL−1
m(p) denotes the random variable having the F -distribution with L − 1 and m(p) degrees

of freedom. For a given α such that 0 < α < 1, we give the following equation of t.

k(p)∑
L=2

P (L, k(p);λ(p)
n )P

(
(L− 1)FL−1

m(p) ≥ t
)
= α

We denote a solution of this equation by b̄2(k(p),m(p),λ
(p)
n ;α). Thus, from (3.7), as a test of level

α for the null hypothesis H
(p)
0 vs. the alternative H(p)A, we can propose to reject H

(p)
0 when the

value of B̄2
(p) is greater than b̄2(k(p),m(p),λ

(p)
n ;α).

For a given α such that 0 < α < 1, we give the following equation of t.

k(p)∑
L=2

P (L, k(p);λ(p)
n )P

(
χ2
L−1 ≥ t

)
= α
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We denote a solution of this equation by c̄2(k(p),λ
(p)
n ;α). Hence, from (3.4), we can reject H

(p)
0

when the value of χ̄
2(p)

k(p) is greater than c̄2(k(p),λ
(p)
n ;α).

For specified i, i′ such that (i, i′) ∈ Uk(p) , if we are interested in testing of

the null hypothesis H
(p)
(i,i′) : µ

(p)
i = µ

(p)
i′ vs. the alternative H

(p)OA
(i,i′) : µ

(p)
i < µ

(p)
i′ , (3.8)

we can use the one-sided two-sample t-test. We consider test procedures for all-pairwise compar-

isons of
{
the null hypothesis H

(p)
(i,i′) vs. the alternative H

(p)OA
(i,i′)

∣∣ (i, i′) ∈ Uk(p)

}
,

where Uk(p) is defined by (1.3). Under the equality of sample sizes n
(p)
1 = . . . = n

(p)

k(p) , Hayter

(1990) proposed single-step simultaneous tests for
{
the null hypothesis H

(p)
(i,i′) vs. the alterna-

tive H
(p)OA
(i,i′)

∣∣ (i, i′) ∈ Uk(p)

}
. Shiraishi (2014) proposed closed testing procedures. It is shown

that (i) the proposed multi-step procedures are more powerful than the single-step procedure of
Hayter (1990), and (ii) confidence regions induced by the multi-step procedures are equivalent to
simultaneous confidence intervals.

We add the condition (C1) of equal sample sizes.

(C1) n
(p)
1 = n

(p)
2 = . . . = n

(p)

k(p) (p = 1, . . . , q).

Then T
(p)
i′i of (2.8) is given by

T
(p)
i′i =

√
n
(p)
1 (X̄

(p)
i′· − X̄

(p)
i· )√

2V
(p)
E

. (3.9)

We put

D(t|k(p)) := P

(
max

1≤i<i′≤k(p)

Zi′ − Zi√
2

≤ t

)
, (3.10)

where Zi ∼ N(0, 1) (i = 1, . . . , k(p)) and Z1, . . . , Zk(p) are independent. Shiraishi (2014) gives

lim
n(p)→∞

P(p)0

(
max

1≤i<i′≤k(p)
T

(p)
i′i ≤ t

)
= D(t|k(p)). (3.11)

Let U
(p)
E be a random variable distributed to χ2-distribution with m(p) degrees of freedom that is

independent of Z1, . . . , Zk(p) . Then we define TD(t) by

TD(t|k(p),m(p)) := P(p)0

(
max

1≤i<i′≤k(p)
T

(p)
i′i ≤ t

)

= P

 max
1≤i<i′≤k(p)

Zi′ − Zi√
2U

(p)
E /m(p)

≤ t


=

∫ ∞

0

D(ts|k(p))g(s|m(p))ds, (3.12)

where g(s|m(p)) is defined by (2.7). From Shiraishi et al. (2019), we get the following recurrence
formula.

H1(t, x) := P

(
Z1 − x√

2
≤ t

)
= Φ(

√
2 · t+ x), (3.13)

Hr(t, x) :=

∫ x

−∞
Hr−1(t, y)φ(y)dy

+Hr−1(t, x){Φ(
√
2 · t+ x)− Φ(x)} (2 ≤ r ≤ k(p) − 1), (3.14)

D(t|k(p)) =
∫ ∞

−∞
Hk−1(t, x)φ(x)dx. (3.15)

Futhermore from (3.12) and (3.15), we get

TD(t|k(p),m(p)) =

∫ ∞

0

{∫ ∞

−∞
H

(p)
k−1(ts, x)φ(x)dx

}
g(s|m(p))ds. (3.16)
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For a given α such that 0 < α < 1, we put

td(k(p),m(p);α) := a solution of t satisfying the equation TD(t|k(p),m(p)) = 1− α. (3.17)

By using (3.12), we can derive single step procedures proposed by Hayter (1990).

[3.1] Single-step tests based on one-sided t-test statistics

The simultaneous test of level α for the {null hypothesis H(p)
(i,i′) vs. alternative hypothesis

H
(p)OA
(i,i′) : µ

(p)
i < µ

(p)
i′ | (i, i′) ∈ Uk(p)} consist in rejecting H

(p)
(i,i′) for (i, i′) ∈ Uk(p) such that

Ti′i > td(k(p),m(p);α).
Next we introduce closed testing procedures. The closure of H(p) under the order restrictions

(3.1) is given by

H(p)o
=

{∧
v∈V

H(p)
v

∣∣∣∣ ∅ ⊊ V ⊂ Uk(p)

}
=

{ ∧
v∈V +

H(p)
v

∣∣∣∣ ∅ ⊊ V ⊂ Uk(p)

}
. (3.18)

where
V + := {(i, i+ 1)| For (i0, i′0) ∈ V, i0 ≤ i < i+ 1 ≤ i′0}. (3.19)

Then, we get ∧
v∈V

H(p)
v =

∧
v∈V +

H(p)
v : for any (i, i′) ∈ V, µ

(p)
i = µ

(p)
i′ holds. (3.20)

Let I
(p)o
1 , . . . , I

(p)o

J(p) be disjoint sets satisfying the following property (C2).

(C2) There exist integers ℓ
(p)
1 , . . . , ℓ

(p)

J(p) ≥ 2 and integers 0 ≤ s
(p)
1 < . . . < s

(p)

J(p) < k(p) such that

I
(p)o
j = {s(p)j + 1, s

(p)
j + 2, . . . .s

(p)
j + ℓ

(p)
j } (j = 1, . . . , J (p)) (3.21)

and s
(p)
j + ℓ

(p)
j ≤ s

(p)
j+1 (j = 1, . . . , J (p) − 1).

We define the null hypothesis H(p)o(I
(p)o
1 , . . . , I

(p)o

J(p) ) by

H(p)o(I
(p)o
1 , . . . , I

(p)o

J(p) ) : for any j such that 1 ≤ j ≤ J (p) and

for any i, i′ ∈ I
(p)o
j , µ

(p)
i = µ

(p)
i′ holds. (3.22)

The elements of I
(p)o
j are consecutive integers and ℓ

(p)
j = #(I

(p)o
j ) ≥ 2. From (3.22), for any

nonempty V ⊂ Uk(p) , there exist an integer J (p) and some subsets I
(p)o
1 , . . . , I

(p)o

J(p) ⊂ {1, . . . , k(p)}
satisfying (C2) such that ∧

v∈V

H(p)
v =

∧
v∈V +

H(p)
v = H(p)o(I

(p)o
1 , . . . , I

(p)o

J(p) ). (3.23)

Futhermore H(p)o(I
(p)o
1 , . . . , I

(p)o

J(p) ) is expressed as

H(p)o(I
(p)o
1 , . . . , I

(p)o

J(p) ) : µ
(p)

s
(p)
j +1

= µ
(p)

s
(p)
j +2

= . . . = µ
(p)

s
(p)
j +ℓ

(p)
j

(j = 1, . . . , J (p)). (3.24)

Let us put

T (p)o(I
(p)o
j ) = max

s
(p)
j +1≤i<i′≤s

(p)
j +ℓ

(p)
j

T
(p)
i′i (j = 1, . . . , J (p)),

where I
(p)o
j is defined in (C2) and T

(p)
i′i is defined by (3.9).

Corresponding to (3.10), (3.12) and (3.17), for ℓ(p) such that 2 ≤ ℓ(p) ≤ k(p), we put

D(t|ℓ(p)) := P

(
max

1≤i<i′≤ℓ(p)

Zi′ − Zi√
2

≤ t

)
, (3.25)

TD(t|ℓ(p),m(p)) := P

 max
1≤i<i′≤ℓ(p)

Zi′ − Zi√
2U

(p)
E /m(p)

≤ t
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and

td(ℓ(p),m(p);α) :=a solution of t satisfying the equation

TD(t|ℓ(p),m(p)) = 1− α, (3.26)

where Zi and U
(p)
E are random variables used in (3.12).

Corresponding to (3.12), we have

TD(t|ℓ(p),m(p)) =

∫ ∞

0

D(ts|ℓ(p))g(s|m(p))ds.

Then, we propose the stepwise procedure [3.2].

[3.2] Stepwise procedure based on one-sided t-test statistics

For H(p)o(I
(p)o
1 , . . . , I

(p)o

J(p) ) of (3.23), we set

M (p) = M (p)(I
(p)o
1 , . . . , I

(p)o

J(p) ) =
J(p)∑
j=1

ℓ
(p)
j . (3.27)

For ℓ(p) = ℓ
(p)
1 , . . . , ℓ

(p)
J , we define α(M (p), ℓ(p)) by (2.15). By obeying the notation td(ℓ(p),m(p);α),

we get
TD(td(ℓ(p),m(p);α(M (p), ℓ(p)))|ℓ(p),m(p)) = 1− α(M (p), ℓ(p)), (3.28)

that is, td(ℓ(p),m(p);α(M (p), ℓ(p))) is an upper 100α(M (p), ℓ(p))% point of the distribution TD(t|ℓ(p),m(p)).

(a) J (p) ≥ 2

Whenever td
(
ℓ
(p)
j ,m(p);α(M (p), ℓ

(p)
j )
)
< T (p)o(I

(p)o
j ) holds for an integer j such that 1 ≤ j ≤

J (p), we reject the hypothesis
∧

v∈V + H
(p)
v .

(b) J (p) = 1 (M (p) = ℓ
(p)
1 )

Whenever td
(
M (p),m(p);α

)
< T (p)o(I

(p)o
1 ), we reject the hypothesis

∧
v∈V + H

(p)
v .

By using the methods of (a) and (b), when
∧

v∈V + H
(p)
v is rejected for any V such that (i, i′) ∈

V ⊂ Uk(p) , the null hypothesis H
(p)
(i,i′) is rejected as a multiple comparison test, where V + is defined

by (3.19).

We do not suppose the condition (C1) of equal sample sizes from now on. The discussions of
(3.18)-(3.24) do not depend on the condition (C1).

For I
(p)o
j of (3.21) and j = 1, . . . , J (p), we define µ̃

(p)o

s
(p)
j +1

(I
(p)o
j ), . . . , µ̃

(p)o

s
(p)
j +ℓ

(p)
j

(I
(p)o
j ) by u

s
(p)
j +1

, . . . ,

u
s
(p)
j +ℓ

(p)
j

which minimize
∑

i∈I
(p)o
j

λ
(p)
ni

(
ui − X̄

(p)
i·

)2
under simple order restrictions u

s
(p)
j +1

≤
u
s
(p)
j +2

≤ . . . ≤ u
s
(p)
j +ℓ

(p)
j

, i.e.,

∑
i∈I

(p)o
j

λ
(p)
ni

(
µ̃
(p)o
i (I

(p)o
j )− X̄

(p)
i·

)2
= min

u
s
(p)
j

+1
≤...≤u

s
(p)
j

+ℓ
(p)
j

∑
i∈I

(p)o
j

λ
(p)
ni

(
ui − X̄

(p)
i·

)2
.

Corresponding to (3.2), we get

µ̃
(p)o

s
(p)
j +r

(I
(p)o
j ) = max

s
(p)
j +1≤a≤s

(p)
j +r

min
s
(p)
j +r≤b≤s

(p)
j +ℓ

(p)
j

∑b
i=a n

(p)
i X̄

(p)
i·∑b

i=a n
(p)
i

(r = 1, . . . , ℓ
(p)
j ).

We put

B̄2
(p)(I

(p)o
j ) :=

∑
i∈I

(p)o
j

n
(p)
i

(
µ̃
(p)o
i (I

(p)o
j )− X̄

(p)
·· (I

(p)o
j )

)2
V

(p)
E

, (3.29)
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where

X̄
(p)
·· (I

(p)o
j ) :=

∑
i∈I

(p)o
j

∑n
(p)
i

t=1 X
(p)
it∑

i∈I
(p)o
j

n
(p)
i

.

Let P (L, ℓ
(p)
j ;λ

(p)
n (I

(p)o
j )) be the probability that µ̃

(p)o

s
(p)
j +1

(I
(p)o
j ), . . . , µ̃

(p)o

s
(p)
j +ℓ

(p)
j

(I
(p)o
j ) takes exactly

L distinct values under H
(p)
0 , where

λ
(p)
n (I

(p)o
j ) := (n

(p)

s
(p)
j +1

/n(p), n
(p)

s
(p)
j +2

/n(p), . . . , n
(p)

s
(p)
j +ℓ

(p)
j

/n(p)). Then, from (3.7), for t > 0, under

H(p)o(I
(p)o
1 , . . . , I

(p)o

J(p) ) of (3.24), we get

P (B̄2
(p)(I

(p)o
j ) ≥ t) = P(p)0(B̄

2
(p)(I

(p)o
j ) ≥ t)

=

ℓ
(p)
j∑

L=2

P (L, ℓ
(p)
j ;λ(p)

n (I
(p)o
j ))P

(
(L− 1)FL−1

m(p) ≥ t
)
. (3.30)

For a given α such that 0 < α < 0.5, we put

b̄2(ℓ
(p)
j ,λ(p)

n (I
(p)o
j ),m(p);α) :=a solution of t satisfying the equation

P(p)0(B̄
2
(p)(I

(p)o
j ) ≥ t) = α. (3.31)

We put

χ̄2
(p)(I

(p)o
j ) :=

∑
i∈I

(p)o
j

n
(p)
i

(
µ̃
(p)o
i (I

(p)o
j )− X̄

(p)
·· (I

(p)o
j )

)2
σ2
(p)

.

In order to discuss the asymptotic theory, we add the condition (C3).

(C3) lim
n(p)→∞

(n
(p)
i /n(p)) = λ

(p)
i > 0 (1 ≤ i ≤ k(p), 1 ≤ p ≤ q)

We define µ̆
(p)o
1 , . . . , µ̆

(p)o

ℓ
(p)
j

by

ℓ
(p)
j∑
i=1

λ
(p)

s
(p)
j +i

(
µ̆
(p)o
i − Zi

)2
= min

u1≤...≤u
ℓ
(p)
j

ℓ
(p)
j∑
i=1

λ
(p)

s
(p)
j +i

(ui − Zi)
2

where Z1, . . . , Zℓ
(p)
j

are independent and Zi ∼ N(0, 1/λ
(p)

s
(p)
j +i

) (i = 1, . . . , ℓ
(p)
j ). Let P (L, ℓ

(p)
j ;λ(p)(I

(p)o
j ))

be the probability that µ̆
(p)o
1 , . . . , µ̆

(p)o

ℓ
(p)
j

takes exactly L distinct values, where

λ(p)(I
(p)o
j ) := (λ

(p)

s
(p)
j +1

, . . . , λ
(p)

s
(p)
j +ℓ

(p)
j

). Then, for t > 0, under the condition (C3), we get

lim
n(p)→∞

P(p)0

(
χ̄2
(p)(I

(p)o
j ) ≥ t

)
=

ℓ
(p)
j∑

L=2

P (L, ℓ
(p)
j ;λ(p)(I

(p)o
j ))P

(
χ2
L−1 ≥ t

)
. (3.32)

Futhermore, for t > 0, under the condition (C3),

lim
n(p)→∞

P(p)0(B̄
2
(p)(I

(p)o
j ) ≥ t) = lim

n(p)→∞
P(p)0

(
χ̄2
(p)(I

(p)o
j ) ≥ t

)
(3.33)

holds. For a given α such that 0 < α < 0.5, we put

c̄2
(
ℓ
(p)
j ,λ(p)(I

(p)o
j );α

)
:=a solution of t satisfying the equation

lim
n(p)→∞

P(p)0

(
χ̄2
(p)(I

(p)o
j ) ≥ t

)
= α. (3.34)
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Under (C3), we have

lim
n(p)→∞

b̄2(ℓ
(p)
j ,λ(p)

n (I
(p)o
j ),m(p);α) = c̄2

(
ℓ
(p)
j ,λ(p)(I

(p)o
j );α

)
.

Then, we propose the stepwise procedure [3.3].

[3.3] Stepwise procedure based on B̄2
(p) statistics

For H(p)o(I
(p)o
1 , . . . , I

(p)o

J(p) ) of (3.23) and for ℓ(p) = ℓ
(p)
1 , . . . , ℓ

(p)
J , we define M (p) and α(M (p), ℓ(p))

by (3.27) and (2.15) respectively.

(a) J (p) ≥ 2

Whenever b̄2
(
ℓ
(p)
j ,λ(p)

n (I
(p)o
j ),m(p);α(M (p), ℓ

(p)
j )
)

< B̄2
(p)(I

(p)o
j ) holds for an integer j such

that 1 ≤ j ≤ J , we reject the hypothesis
∧

v∈V + H
(p)
v .

(b) J (p) = 1 (M (p) = ℓ
(p)
1 )

Whenever b̄2
(
ℓ
(p)
1 ,λ(p)

n (I
(p)o
1 ),m(p);α

)
< B̄2

(p)(I
(p)o
1 ), we reject the hypothesis

∧
v∈V + H

(p)
v .

By using the methods of (a) and (b), when
∧

v∈V + H
(p)
v is rejected for any V such that (i, i′) ∈

V ⊂ Uk(p) , the null hypothesis H
(p)
(i,i′) is rejected as a multiple comparison test, where V + is defined

by (3.19).

4 Serial gatekeeping procedures

Suppose that the families H(1), . . . ,H(q) of null hypotheses has the order (1.4) of priority. Futher-

more suppose that, for some p, simple order restrictions µ
(p)
1 ≤ µ

(p)
2 ≤ . . . ≤ µ

(p)

k(p) hold. Let us put
the set

Oq := {p| µ(p)
1 ≤ µ

(p)
2 ≤ . . . ≤ µ

(p)

k(p) is satisfied and 1 ≤ p ≤ q}. (4.1)

Then we propose multiple test procedures for all-pairwise comparisons of{
the null hypothesis H

(p)
(i,i′) vs. the alternative

H
(p)A
(i,i′) or H

(p)OA
(i,i′)

∣∣ (i, i′) ∈ Uk(p) , 1 ≤ p ≤ q
}
, (4.2)

where we choose H
(p)A
(i,i′) as the alternative hypothesis for p ∈ Oc

q ∩ {1, . . . , q} and choose H
(p)OA
(i,i′)

for p ∈ Oq. In sections 2.1 and 2.2, we state multiple tests among µ
(p)
1 , . . . , µ

(p)

k(p) for fixed p. In

this section, we discuss multiple tests among µ
(p)
1 , . . . , µ

(p)

k(p) for all p’s. Since the serial gatekeeping

procedure is a closed testing procedure, we introduce closed testing procedures for
∪q

p=1 H(p).

The closure of
∪q

p=1 H(p) is given by

q∪
p=1

H(p) ≡

{
h∧

g=1

 ∧
v∈V (pg)

H
(pg)
v

 ∣∣∣∣∣ there exist integer h and integers p1, . . . , ph

such that 1 ≤ h ≤ q, 1 ≤ p1 < . . . < ph ≤ q, and

∅ ⊊ V (pg) ⊂ Uk(pg) (1 ≤ g ≤ h) hold

}
Then, we get

h∧
g=1

 ∧
v∈V (pg)

H
(pg)
v

 : for any g such that 1 ≤ g ≤ h and for any (i, i′) ∈ V (pg),

µ
(pg)
i = µ

(pg)
i′ holds.
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Then, from (2.13) and (3.23), for any nonempty V (pg) ⊂ Uk(pg) , there exist an integer J (pg) and

disjoint sets I
(pg)∗
1 , . . . , I

(pg)∗
J(pg) such that∧

v∈V (pg)

H
(pg)
v = H(pg)∗(I

(pg)∗
1 , . . . , I

(pg)∗
J(pg) ) (4.3)

and #(I
(pg)∗
j ) ≥ 2 (j = 1, . . . , J (pg)),

where H(pg)∗(I
(pg)∗
1 , . . . , I

(pg)∗
J(pg) ) stands for

H(pg)∗(I
(pg)∗
1 , . . . , I

(pg)∗
J(pg) ) :=

{
H(pg)(I

(pg)
1 , . . . , I

(pg)

J(pg)) (pg ∈ Oc
q ∩ {1, . . . , q})

H(pg)o(I
(pg)o
1 , . . . , I

(pg)o

J(pg) ) (pg ∈ Oq),

and, for j = 1, . . . , Jpg , I
(pg)∗
j stands for

I
(pg)∗
j :=

{
I
(pg)
j (pg ∈ Oc

q ∩ {1, . . . , q})
I
(pg)o
j (pg ∈ Oq).

Hence we get
h∧

g=1

 ∧
v∈V (pg)

H
(pg)
v

 =
h∧

g=1

H(pg)∗(I
(pg)∗
1 , . . . , I

(pg)∗
J(pg) ), (4.4)

where 1 ≤ p1 < . . . < ph ≤ q．

[4.1] Hybrid serial gatekeeping procedure
For integer p such 1 ≤ p ≤ q, in ascending order, perform multiple comparison test of level α

based on stepwise procedure [2.4] or [3.3], where we choose [2.4] for p ∈ Oc
q ∩{1, . . . , q} and choose

[3.3] for p ∈ Oq. Then we reject null hypotheses in
∪q

p=1 H(p) obeying the following (b1)-(b3).

(b1) When there is a null hypothesis in H(1) that is not rejected by stepwise procedure [2.4] or
[3.3], only the null hypothesis rejected in H(1) is rejected as a multiple comparison test.

(b2) When there exists an integer q0 satisfying q0 < q that, for any p such that 1 ≤ p ≤ q0, all the
null hypotheses in H(p) are rejected by stepwise procedure [2.4] or [3.3] and there is a null
hypothesis in H(q0+1) that is not rejected, all the null hypotheses in

∪q0
p=1 H(p) are rejected

as a multiple comparison test and only the null hypothesis rejected in H(q0+1) is rejected.

(b3) When, for any p satisfying 1 ≤ p ≤ q, all the null hypotheses in H(p) are rejected by step-
wise procedure [2.4] or [3.3], all the null hypotheses in

∪q
p=1 H(p) are rejected as a multiple

comparison test.

　
Theorem 2.1 The test procedure [4.1] is a multiple comparison test of level α.
proof. It is enough to show that [4.1] is a closed testing procedure of level α.

The test of level α for H(p1)∗(I
(p1)∗
1 , . . . , I

(p1)∗
J(p1) ) is executed. Futhermore, when h ≥ 2 in (4.4),

the test of level 0 for H(pg)∗(I
(pg)∗
1 , . . . , I

(pg)∗
J(pg) ) is executed for any g such that 2 ≤ g ≤ h. As these

results, we are able to decide whether or not the hypothesis
∧h

g=1

(∧
v∈V (pg) H

(pg)
v

)
is rejected.

Let us refer to this method as A-procedure.

(1). The case of (b1)

Suppose thatH
(1)
(i1,i′1)

is rejected by using the procedure [4.1]. Then, from A-procedure, p1 = 1

holds and there exists j such that all the null hypotheses (4.4) satisfying i1, i
′
1 ∈ I

(1)∗
j and 1 ≤

j ≤ J (1) are rejected. Suppose that H
(1)
(i2,i′2)

is not rejected by using the procedure [4.1].

Then, from A-procedure, p1 = 1 holds and there exists j′ such that some null hypothesis

(4.3) satisfying i2, i′2 ∈ I
(1)∗
j′ and 1 ≤ j′ ≤ J (1) is not rejected. Let H(1)∗(I

(1)∗
01 , . . . , I

(1)∗
0J(1))

100 Hybrid Serial Gatekeeping Procedures for All-Pairwise Comparisons in Multi-Sample Models



be the null hypothesis that is not rejected. Then, from A-procedure, H
(1)
(i2,i′2)

is not rejected.

From A-procedure,H(1)∗(I
(1)∗
01 , . . . , I

(1)∗
0J(1))

∧(∧h
g=2 H

(pg)∗(I
(pg)∗
1 , . . . , I

(pg)∗
J(pg) )

)
is not rejected.

Therefor all the null hypotheses in
∪q

p=2 H(p) are not rejected.

(2). The case of (b2)

Since any null hypothesis (4.4) satisfying 1 ≤ p1 ≤ q0 is rejected, for any p such that 1 ≤ p ≤
q0, all the null hypotheses in H(p) are rejected. Suppose that H

(q0+1)
(i1,i′1)

in H(q0+1) is rejected by

using the procedure [4.1]. Then, from A-procedure, p1 = q0 +1 holds and there exists j such

that all the null hypotheses (4.4) satisfying i1, i′1 ∈ I
(q0+1)∗
j and 1 ≤ j ≤ J (q0) are rejected.

Suppose that H
(q0+1)
(i2,i′2)

in H(q0+1) is not rejected by using the procedure [4.1]. Then, from A-

procedure, p1 = q0+1 holds and there exists j′ such that some null hypothesis (4.3) satisfying

i2, i′2 ∈ I
(q0+1)∗
j′ and 1 ≤ j′ ≤ J (q0+1) is not rejected. Let H(q0+1)∗(I

(q0+1)∗
01 , . . . , I

(q0+1)∗
0J(q0+1))

be the null hypothesis that is not rejected. Then, from A-procedure, H
(q0+1)
(i2,i′2)

is not rejected.

From A-procedure, H(q0+1)∗(I
(q0+1)∗
01 , . . . , I

(q0+1)∗
0J(q0+1))

∧(∧h
g=2 H

(pg)∗(I
(pg)∗
1 , . . . , I

(pg)∗
J(pg) )

)
(q0+

1 < p2) is not rejected. Therefor all the null hypotheses in
∪q

p=q0+2 H(p) are not rejected.

(3) The case of (b3)

From A-procedure, it is self-evident that all the null hypotheses in{
H

(p)
(i,i′)

∣∣ (i, i′) ∈ Uk(p) , 1 ≤ p ≤ q
}
are rejected.

From (1)-(3), the closed testing procedure of level α for (4.2) based on A-procedure is equivalent
to the procedure [4.1]. 2

Even if we replace [2.4] with [2.1], [2.2] or [2.3] in the hybrid serial gatekeeping procedure [4.1],
Theorem 2.1 still holds. Futhermore even if we replace [3.3] with [3.1] or [3.2] in [4.1], Theorem
2.1 still holds under the condition (C1) of equal sample sizes.

5 Application to multivariate multi-sample models

　 Let {Xij = (X
(1)
ij , . . . , X

(q)
ij )′| j = 1, . . . , ni, i = 1, . . . , k} be a set of independent vector-values

random variables. Furhtermore suppose that the mean vector and variance-covariance matrix of
Xij are given by

E(Xij) = µi = (µ
(1)
i , . . . , µ

(q)
i )′ and V (Xij) = Σ = (σpp′)p,p′=1,...,q,

respectively, and that the cumulative distribution of Xij is denoted by F (x−µi). Then this model
becomes a q variate k sample model. Futhermore the model is limited to

(C4) k(p) = k (p = 1, . . . , q) and n
(p)
i = ni (i = 1, . . . , k, p = 1, . . . , q)

in the model of (1). σpp = σ2
(p) holds for p = 1, . . . , q. The notations of (4), (6) and (7) are

simplified to

Uk = {(i, i′) | 1 ≤ i < i′ ≤ k}, V
(p)
E =

1

m

k∑
i=1

ni∑
j=1

(X
(p)
ij − X̄

(p)
i· )2

m = n− k, and n =
k∑

i=1

ni.

In the q variate k sample model, gatekeeping procedures [4.1] gives multiple comparison tests of
level α for all-pairwise comparisons of{

the null hypothesis H
(p)
(i,i′) vs. the alternative

H
(p)A
(i,i′) or H

(p)OA
(i,i′)

∣∣ (i, i′) ∈ Uk, 1 ≤ p ≤ q
}
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under the limits of (C4).
National cancer mortality data is posted on Cancer Registry and Statistics. Cancer Information

Service, National Cancer Center, Japan (Vital Statistics of Japan). In the data, we use mortality
rate by age group (to population 100,000), site, sex, year of death and we show the results for the
application of the proposed procedures. We divide four groups of 15 to 19 years old, 20 to 24 years
old, 25 to 29 years old, and 30 to 34 years old in male. Table 1 is mortality rate data of all parts
consisting of observations from 2014 to 2019 in the four groups. Futhermore Table 2 is mortality
rate data of leukemia. When Table 1 and Table 2 are combined, it becomes two-dimensional 4

samples, that is, q = 2 and k = 4. We find n
(p)
i = 6 (p = 1, 2; i = 1, . . . , 4). We wish to confirm

differences among mortality rates of all parts at first. Next we confirm differences among mortality

rates of leukemia, that is, H(1) ≻ H(2). From Table 1, estimators of µ
(1)
i (i = 1, 2, 3, 4)

X̄
(1)
1· = 2.57 < X̄

(1)
2· = 3.35 < X̄

(1)
3· = 4.57 < X̄

(1)
4· = 7.17.

Futhermore we get values of statistics

T
(1)
21 = 2.970, T

(1)
31 = 7.582, T

(1)
41 = 17.438,

T
(1)
32 = 4.612, T

(1)
42 = 14.469, T

(1)
43 = 9.856.

From Table 16 of Shiraishi and Sugiura (2018), we have td(4, 20; 0.05) = 2.508. Since T
(1)
i′i >

td(4, 20; 0.05) holds for any (i, i′) ∈ U4, by using multiple comparison tests of level 0.05 for all-

pairwise comparisons of
{
the null hypothesis H

(1)
(i,i′) vs. the alternative H

(1)OA
(i,i′)

∣∣ (i, i′) ∈ U4

}
, all

the null hypotheses in
{
H

(1)
(i,i′)

∣∣ (i, i′) ∈ U4

}
are rejected. From Table 2, we get the values of

statistics

T
(2)
21 = 2.569, T

(2)
31 = 2.202, T

(2)
41 = 3.853,

T
(2)
32 = −0.367, T

(2)
42 = 1.284, T

(2)
43 = 1.651.

We give the values of ta (ℓ,mα(M, ℓ)) for the stepwise procedure [2.2] with α = 0.05 and m =

20. By using the stepwise procedure [2.2] of level 0.05 for
{
the null hypothesis H

(2)
(i,i′) vs. the

alternative H
(2)A
(i,i′)

∣∣ (i, i′) ∈ U4

}
, the null hypotheses H

(2)
(1,2) and H

(2)
(1,4) are rejected. The other

null hypotheses are retained. Hence we consider the hybrid serial gatekeeping procedure replaced
[2.4] and [3.3] with [2.2] and [3.1] respectively in the hybrid serial gatekeeping procedure [4.1].

By using this hybrid serial gatekeeping procedure of level 0.05 for
{
the null hypothesis H

(1)
(i,i′)

vs. the alternative H
(1)OA
(i,i′)

∣∣ (i, i′) ∈ U4

} ∪{
the null hypothesis H

(2)
(i,i′) vs. the alternative H

(2)A
(i,i′)

∣∣
(i, i′) ∈ U4

}
, we find

µ
(1)
1 < µ

(1)
2 < µ

(1)
3 < µ

(1)
4 , µ

(2)
1 ̸= µ

(2)
2 , µ

(2)
1 ̸= µ

(2)
4 .

6 Discussion

When the families of null hypotheses Fp = {Hpj | j = 1, . . . ,mp} (p = 1, . . . , q) has the order
of priority, F1 ≻ . . . ≻ Fq, Maurer et al. (1995) proposed a multiple comparison test using a
closed test procedure called the serial gatekeeping method. The serial gatekeeping procedures
are based on Bonferroni tests and the test procedure of Holm (1979). In the serial gatekeeping
method, the tests are performed in the order of the null hypothesis family F1, . . . ,Fq. If a null
hypothesis in the Fp (1 ≤ p < q) is not rejected, test procedures for the subsequent null hypothesis
family Fp+1, . . . ,Fq are not performed. As a closed test procedure that covers this shortcoming,
Dmitrienko et al. (2003) proposed a multiple comparison test called the parallel gatekeeping
procedure. In the parallel gatekeeping procedure, Bonferroni’s method is used. Since the parallel
gatekeeping procedure is not simple, it is difficult to propose the parallel gatekeeping procedure
based on [2.1]-[3.3] as a multiple comparison test of level α. It is simple to use the hybrid serial
gatekeeping procedure replaced [2.4] and [3.3] with [2.1] and [3.1] respectively in [4.1]. Under

102 Hybrid Serial Gatekeeping Procedures for All-Pairwise Comparisons in Multi-Sample Models



Table 1: Motality rate data of all parts in male

age group 2014 2015 2016 2017 2018 2019

15− 19 3.2 2.8 2.6 2.3 2.6 1.9
20− 24 3.1 3.7 3.1 3.7 3.3 3.2
25− 29 4.5 4.8 5.0 4.4 4.3 4.4
30− 34 8.3 7.1 7.3 7.4 6.6 6.3

Table 2: Motality rate data of leukemia in male

age group 2014 2015 2016 2017 2018 2019

15− 19 0.8 0.8 0.8 0.5 0.7 0.4
20− 24 0.9 1.0 0.6 1.1 1.0 0.8
25− 29 1.0 0.9 0.9 0.9 0.6 0.9
30− 34 1.2 1.1 1.1 0.9 0.9 0.9

simple order restrictions of (3.1), Shiraishi et al. (2019) investigate the all-pairs power proposed
by Ramsey (1978). As the results, the order of the power is following:

[3.3] ≥ [3.2] > [2.4] ≥ [2.2] > [2.3] > [3.1] > [2.1]. (6.1)

In the all-pairs power of specified alternatives, [3.3] is a little superior to [3.2] and [2.4] is a little
superior to [2.2]. Shiraishi (2014) proves that the rejection region of stepwise procedure [3.2]
includes that of single step procedure [3.1].

As a distribution-free method, we the hybrid gatekeeping procedure of [3.7] based on rank
statistics. By using the asymptotic theory of Hájeck et al. (1999), under contigious local alterna-
tives, we derive asymptotic power of [3.1]-[3.6]. Then corresponding to (6.1), under simple order
restrictions of (3.1), the order of the asymptotic all-pairs power is following:

[3.6] ≥ [3.5] > [3.3] ≥ [3.2] > [3.4] > [3.1].

We suppose the reverse order restrictions

µ
(p)
1 ≥ µ

(p)
2 ≥ . . . ≥ µ

(p)

k(p) (6.2)

Then we put Y
(p)
ij = −X

(p)
ij (j = 1, . . . n

(p)
i ; i = 1, . . . , k(p)). (Y

(p)
i1 , . . . , Y

(p)

in
(p)
i

) is a random sample

of size n
(p)
i from the i-th normal population with unknown mean µ

′(p)
i = −µ

(p)
i (i = 1, . . . , k(p))

and unknown variance σ2
(p). (6.2) is equivalent to the simple order restrictions of µ

′(p)
i ’s: µ

′(p)
1 ≤

µ
′(p)
2 ≤ . . . ≤ µ

′(p)
k(p) . By replacing X

(p)
ij with Y

(p)
ij in all statistics of sections 2 and 3, we can discuss

the multiple comparison procedures under the restrictions (6.2).

Table 3: Critical values ta (ℓ,mα(M, ℓ)) for the stepwise procedure [2.2] with α = 0.05 and m = 20

M \ ℓ 2 3 4
4 2.417 ⋄ 2.799
3 ⋄ 2.530
2 2.086
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